Abstract

The intrinsic evolution of a high-order soliton described by the nonlinear Schrödinger equation is initiated by a self-four-wave mixing effect (or modulational instability) and recurs neatly every soliton period. We show that when there is noise such as amplified spontaneous emission, however, a high-order soliton evolves randomly and independently and is distorted because the evolution is initiated by noise. Thus the time and the frequency coherence of a soliton pulse train are both greatly degraded.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription