Abstract

We have constructed an interference microscope that produces, in real time, reflectivity and topography images of surfaces with depth discrimination better than 1 μm. Intensity and phase images are obtained at the rate of 50  per second by use of a multiplexed lock-in detection and MMX assembler-optimized calculation routines. With a wavelength of 0.84 μm, depth discrimination of 0.7 μm and lateral resolution of 0.3 μm were demonstrated, in good agreement with theory. Two-dimensional cross-sectional reflectivity and topography images taken at different depths in an integrated circuit are presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  2. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
    [CrossRef]
  3. G. S. Kino and S. C. Chim, Appl. Opt. 29, 3775 (1990).
    [CrossRef] [PubMed]
  4. F. C. Chang and G. S. Kino, Appl. Opt. 37, 3471 (1998).
    [CrossRef]
  5. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, Opt. Lett. 23, 244 (1998).
    [CrossRef]
  6. C. J. R. Sheppard and T. Wilson, Appl. Phys. Lett. 38, 858 (1981).
    [CrossRef]

1998 (2)

1990 (1)

1987 (1)

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

1981 (1)

C. J. R. Sheppard and T. Wilson, Appl. Phys. Lett. 38, 858 (1981).
[CrossRef]

Beaurepaire, E.

Blanchot, L.

Boccara, A. C.

Chang, F. C.

Chim, S. C.

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

Kino, G. S.

Lebec, M.

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

Saint-Jalmes, H.

Sheppard, C. J. R.

C. J. R. Sheppard and T. Wilson, Appl. Phys. Lett. 38, 858 (1981).
[CrossRef]

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Wilson, T.

C. J. R. Sheppard and T. Wilson, Appl. Phys. Lett. 38, 858 (1981).
[CrossRef]

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. J. R. Sheppard and T. Wilson, Appl. Phys. Lett. 38, 858 (1981).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

Other (1)

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

System setup of our interference microscope. Only one point of the object is imaged upon the CCD detector array. Wide-field illumination is used to generate in parallel 2-D images.

Fig. 2
Fig. 2

Depth-response envelope of our interference microscope.

Fig. 3
Fig. 3

(a) Cross-sectional intensity images of an integrated circuit obtained with our interference microscope focused at different depths. The depth between successive images is 0.1 μm. Each image corresponds to a field of 35 μm×35 μm. (b) Images of the same integrated circuit obtained with classical noninterference microscopy, using the same objective lenses. The depth increment between successive images is 1 μm.

Fig. 4
Fig. 4

Topography of a plane area of the integrated circuit [bottom right-hand gray square in each picture in Fig.  3(b)].

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

It=AS2+AR2+2ASARcosϕ+ψsinωt,
It=AS2+AR2+2ASARJ0ψcosϕ+4ASARcosϕn=1+J2nψcos2nωt-4ASARsinϕn=0+J2n+1ψ×sin2n+1ωt,
Mt=14+2n=1+sinnπ/4nπcosnωt.
Sp=0,1,2,3=ItMt+p/4f=14AS2+AR2+2ASARcosϕJ0ψ+4πASARcosϕ×n=1+J2nψ2nsinnπ/2cosnpπ+4πASARsinϕ×n=0+J2n+1ψ2n+1sin2n+1π/4sin2n+1pπ/2,
S3-S1=8πASARsinϕn=0+-1nJ2n+1ψ2n+1×sin2n+1π/4,S0-S1+S2-S3=16πASARcosϕn=0+-1n×J4n+2ψ4n+2
Iinterfz=2ARASVz,Vz=0θmaxcos4πzλcosθ+ϕcosθsinθdθ,
Iinterfx0,y0=2ARASx,y×hx-x0,y-y02dxdy,

Metrics