Abstract

We investigate the influence of the excitation spot diameter on the laser threshold of a scattering amplifying medium. Fluorescence spectra are recorded from a suspension of TiO2 scatterers in Sulforhodamine B dye. The threshold pump intensity becomes larger by a factor of 70 if the excitation beam diameter gets close to the mean free path l. This increase is explained by use of a simple model describing diffusion out of the amplifying volume and is confirmed by a Monte Carlo simulation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, Sov. Phys. JETP 26, 835 (1968).
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
    [CrossRef]
  3. M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack, Opt. Lett. 21, 450 (1996).
    [CrossRef] [PubMed]
  4. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 103 (1995).
    [CrossRef]
  5. See, e.g., P. W. Milonni and J. H. Eberly, eds., Lasers (Wiley, New York, 1988).
  6. G. A. Berger, M. Kempe, and A. Z. Genack, Phys. Rev. E 56, 6118 (1997).
    [CrossRef]
  7. M. A. Noginov, H. J. Caufield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
    [CrossRef]
  8. R. M. Balachandran, N. M. Lawandy, and J. A. Moon, Opt. Lett. 22, 319 (1997).
    [CrossRef] [PubMed]
  9. Dye parameters from Kodak Laser Dyes (Eastman Kodak Company, Rochester, N.Y., 1987)J. M. Drake, R. I. Morse, R. N. Steppel, and D. Young, Chem. Phys. Lett. 35, 181 (1975).
    [CrossRef]

1997 (2)

G. A. Berger, M. Kempe, and A. Z. Genack, Phys. Rev. E 56, 6118 (1997).
[CrossRef]

R. M. Balachandran, N. M. Lawandy, and J. A. Moon, Opt. Lett. 22, 319 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (2)

M. A. Noginov, H. J. Caufield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 103 (1995).
[CrossRef]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

1968 (1)

V. S. Letokhov, Sov. Phys. JETP 26, 835 (1968).

Alfano, R. R.

Balachandran, R. M.

R. M. Balachandran, N. M. Lawandy, and J. A. Moon, Opt. Lett. 22, 319 (1997).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Berger, G. A.

Caufield, H. J.

M. A. Noginov, H. J. Caufield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

Genack, A. Z.

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Kempe, M.

Lagendijk, A.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 103 (1995).
[CrossRef]

Lawandy, N. M.

R. M. Balachandran, N. M. Lawandy, and J. A. Moon, Opt. Lett. 22, 319 (1997).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, Sov. Phys. JETP 26, 835 (1968).

Moon, J. A.

Noginov, M. A.

M. A. Noginov, H. J. Caufield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

Noginova, N. E.

M. A. Noginov, H. J. Caufield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Siddique, M.

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 103 (1995).
[CrossRef]

Venkateswarlu, P.

M. A. Noginov, H. J. Caufield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 103 (1995).
[CrossRef]

Nature (London) (2)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Nature (London) 373, 103 (1995).
[CrossRef]

Opt. Commun. (1)

M. A. Noginov, H. J. Caufield, N. E. Noginova, and P. Venkateswarlu, Opt. Commun. 118, 430 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

G. A. Berger, M. Kempe, and A. Z. Genack, Phys. Rev. E 56, 6118 (1997).
[CrossRef]

Sov. Phys. JETP (1)

V. S. Letokhov, Sov. Phys. JETP 26, 835 (1968).

Other (2)

Dye parameters from Kodak Laser Dyes (Eastman Kodak Company, Rochester, N.Y., 1987)J. M. Drake, R. I. Morse, R. N. Steppel, and D. Young, Chem. Phys. Lett. 35, 181 (1975).
[CrossRef]

See, e.g., P. W. Milonni and J. H. Eberly, eds., Lasers (Wiley, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fluorescence of the TiO2-dye suspension at A, 4 μJ mm-2 and B, 0.1 mJ mm-2 pump-pulse energy compared with C, the fluorescence of the neat dye solution.

Fig. 2
Fig. 2

Linewidth versus excitation pulse intensity for 2-mm and 80μm pump diameters. The curves are fits to the data. The threshold of each curve, indicated by an arrow, depends on spot size.

Fig. 3
Fig. 3

Threshold excitation intensity versus pump-beam diameter in units of l=100 μm from the experiment and the simulation. The simulation data are multi-plied by 2.

Fig. 4
Fig. 4

Left, model geometry of the system: the box is the amplifying volume, and the wiggly line represents a path. Right, the implementation of this path that was used in the simulation. The return probabilities R1 and R2 are calculated for S1 (outside the gain volume) and S2 (inside). For S2 we also evaluate the path length Lp in the gain volume.

Metrics