Abstract

We demonstrate a scheme for volume holographic storage based on the features of shift selectivity of a speckle reference-wave hologram. The proposed recording method permits more-efficient use of the recording medium and yields greater storage density than spherical or plane-wave reference beams. Experimental results of multiple hologram storage and replay in a photorefractive crystal of iron-doped lithium niobate are presented. The mechanisms of lateral and longitudinal shift selectivity are described theoretically and shown to agree with experimental measurements.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Van Heerden, Appl. Opt. 2, 156 (1963).
    [CrossRef]
  2. F. H. Mok, Opt. Lett. 18, 915 (1993).
    [CrossRef]
  3. S. Tao, D. Selviah, and J. Midwinter, Opt. Lett. 18, 912 (1993).
    [CrossRef]
  4. J. Rosen, M. Segev, and A. Yariv, Opt. Lett. 18, 744 (1993).
    [CrossRef] [PubMed]
  5. G. Rakuljic, V. Leyva, and A. Yariv, Opt. Lett. 17, 1471 (1992).
    [CrossRef]
  6. C. Alves, G. Pauliat, and G. Roosen, Opt. Lett. 19, 1894 (1994).
    [CrossRef]
  7. A. Darskii and V. Markov, Proc. SPIE 1600, 318 (1992).
    [CrossRef]
  8. V. Markov, Yu. Denisyuk, and R. Amezquita, Opt. Mem. Neural Networks 6, 91 (1997).
  9. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, Opt. Lett. 20, 782 (1995).
    [CrossRef] [PubMed]
  10. J. Rosen, Proc. SPIE 2514, 14 (1995).
    [CrossRef]
  11. S. Chinn and E. Swanson, Opt. Lett. 21, 899 (1996).
    [CrossRef] [PubMed]
  12. P. Mitkas and L. Irakliotis, Opt. Mem. Neural Networks 3, 217 (1994).
  13. A. Darskii and V. Markov, Opt. Spectrosc. 65, 661 (1988).
  14. L. Leuschacke and M. Kirchner, J. Opt. Soc. Am. A 7, 827 (1990).
    [CrossRef]

1997 (1)

V. Markov, Yu. Denisyuk, and R. Amezquita, Opt. Mem. Neural Networks 6, 91 (1997).

1996 (1)

1995 (2)

1994 (2)

C. Alves, G. Pauliat, and G. Roosen, Opt. Lett. 19, 1894 (1994).
[CrossRef]

P. Mitkas and L. Irakliotis, Opt. Mem. Neural Networks 3, 217 (1994).

1993 (3)

1992 (2)

G. Rakuljic, V. Leyva, and A. Yariv, Opt. Lett. 17, 1471 (1992).
[CrossRef]

A. Darskii and V. Markov, Proc. SPIE 1600, 318 (1992).
[CrossRef]

1990 (1)

1988 (1)

A. Darskii and V. Markov, Opt. Spectrosc. 65, 661 (1988).

1963 (1)

Alves, C.

Amezquita, R.

V. Markov, Yu. Denisyuk, and R. Amezquita, Opt. Mem. Neural Networks 6, 91 (1997).

Barbastathis, G.

Chinn, S.

Curtis, K.

Darskii, A.

A. Darskii and V. Markov, Proc. SPIE 1600, 318 (1992).
[CrossRef]

A. Darskii and V. Markov, Opt. Spectrosc. 65, 661 (1988).

Denisyuk, Yu.

V. Markov, Yu. Denisyuk, and R. Amezquita, Opt. Mem. Neural Networks 6, 91 (1997).

Irakliotis, L.

P. Mitkas and L. Irakliotis, Opt. Mem. Neural Networks 3, 217 (1994).

Kirchner, M.

Leuschacke, L.

Levene, M.

Leyva, V.

Markov, V.

V. Markov, Yu. Denisyuk, and R. Amezquita, Opt. Mem. Neural Networks 6, 91 (1997).

A. Darskii and V. Markov, Proc. SPIE 1600, 318 (1992).
[CrossRef]

A. Darskii and V. Markov, Opt. Spectrosc. 65, 661 (1988).

Midwinter, J.

Mitkas, P.

P. Mitkas and L. Irakliotis, Opt. Mem. Neural Networks 3, 217 (1994).

Mok, F. H.

Pauliat, G.

Psaltis, D.

Pu, A.

Rakuljic, G.

Roosen, G.

Rosen, J.

Segev, M.

Selviah, D.

Swanson, E.

Tao, S.

Van Heerden, P.

Yariv, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of multilayer speckle–reference-beam-encoded hologram recording. Abbreviations are defined in text.

Fig. 2
Fig. 2

Calculated diffracted beam intensity INΔ as a function of lateral Δ and longitudinal Δ shifts for a hologram recorded and reconstructed with a speckle-encoded reference beam.

Fig. 3
Fig. 3

Measured diffraction efficiency of 30  holograms multiplexed with lateral shift Δ=10 μm between successive recordings.

Fig. 4
Fig. 4

Measured diffracted beam intensity as a function of spatial shift in the X, Y, and Z directions for two layers of holographic recordings that have a longitudinal shift of 30 μm between layers. Each layer is composed of a 3×3 matrix of holograms. The contour lines correspond to 7% increments normalized to the largest measured intensity. For clarity, the Z dependence for only two of the holograms is shown.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sr=ko2VδεrRrexpikor-r4πr-rd3r.
Sr=expikosrVCr,rd3r.
IDNΔ=IDΔIDΔ=0=0TexpikonΔ22ddh-+KDq2exp-ikonddhqΔd2qdz2T2-+KDq2d2q,

Metrics