Abstract

Frequency-resolved optical gating (FROG) based on second-harmonic generation has been demonstrated to be capable of high-fidelity measurement of the electric-field envelope and of the temporal evolution of the instantaneous carrier frequency of 0.1-TW 5-fs pulses without the need for any correction for systematic experimental errors. At a 1-kHz repetition rate, pulse energies of a few microjoules are sufficient for reliable FROG characterization of pulses with durations down to the single-cycle regime. The results obtained reveal that carefully designed hollow-fiber chirped-mirror compressors are able to deliver high-power sub-10-fs pulses with a smooth Gaussianlike leading edge that has an intensity contrast of 10-2.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Szipöcs, K. Ferencz, Ch. Spielmann, and F. Krausz, Opt. Lett. 19, 201 (1994).
    [CrossRef]
  2. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, Opt. Lett. 22, 831 (1997).
    [CrossRef]
  3. R. Szipöcs and A. Köhazi-Kis, Appl. Phys. B 65, 115 (1997).
  4. G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, IEEE J. Sel. Topics Quantum Electron. 4, 193 (1998).
    [CrossRef]
  5. A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, Opt. Lett. 22, 102 (1997).
    [CrossRef] [PubMed]
  6. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, Opt. Lett. 22, 522 (1997).
    [CrossRef] [PubMed]
  7. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, and K. Ferencz, Opt. Lett. 22, 1562 (1997).
    [CrossRef]
  8. T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
    [CrossRef]
  9. D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
    [CrossRef]
  10. G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
    [CrossRef]
  11. A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 23, 1474 (1998).
    [CrossRef]
  12. A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
    [CrossRef]
  13. To within the approximation described in the text, the expression given by relation (1) is more accurate than a similar simplified expression derived in Ref.??12, in that it accounts for all sum-frequency combinations ?1+?2 yielding contributions to a given detected spectral component S?,?, in contrast with the expression summarized by Eqs.??(3)–(5) in Ref.??12
  14. Ch. Spielmann, L. Xu, and F. Krausz, Appl. Opt. 36, 2523 (1997).
    [CrossRef] [PubMed]
  15. K. W. DeLong, D. N. Fittinghoff, and R. Trebino, IEEE J. Quantum Electron. 32, 1253 (1996).
    [CrossRef]
  16. F. Krausz, T. Brabec, M. Schnürer, and Ch. Spielmann, Opt. Photon. News 9(7), 46 (1998).
    [CrossRef]

1998 (3)

G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, IEEE J. Sel. Topics Quantum Electron. 4, 193 (1998).
[CrossRef]

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 23, 1474 (1998).
[CrossRef]

F. Krausz, T. Brabec, M. Schnürer, and Ch. Spielmann, Opt. Photon. News 9(7), 46 (1998).
[CrossRef]

1997 (7)

1996 (2)

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, IEEE J. Quantum Electron. 32, 1253 (1996).
[CrossRef]

1994 (1)

1993 (1)

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

1983 (1)

A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
[CrossRef]

Baltuska, A.

Brabec, T.

F. Krausz, T. Brabec, M. Schnürer, and Ch. Spielmann, Opt. Photon. News 9(7), 46 (1998).
[CrossRef]

T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
[CrossRef]

Cheng, Z.

Christov, I. P.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

De Silvestri, S.

DeLong, K. W.

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, IEEE J. Quantum Electron. 32, 1253 (1996).
[CrossRef]

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

Ferencz, K.

Fittinghoff, D. N.

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, IEEE J. Quantum Electron. 32, 1253 (1996).
[CrossRef]

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

Haus, H. A.

Heine, C.

Kane, D. J.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Kapteyn, H. C.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

Kärtner, F. X.

Keller, U.

Köhazi-Kis, A.

R. Szipöcs and A. Köhazi-Kis, Appl. Phys. B 65, 115 (1997).

Krausz, F.

Krumbügel, M. A.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

Lenzner, M.

Matuschek, N.

Morf, R.

Murnane, M. M.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

Nisoli, M.

Pshenichnikov, M. S.

Rundquist, A.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

Sartania, S.

Scheuer, V.

Schibli, T.

Schnürer, M.

F. Krausz, T. Brabec, M. Schnürer, and Ch. Spielmann, Opt. Photon. News 9(7), 46 (1998).
[CrossRef]

Spielmann, Ch.

Svelto, O.

Sweetser, J. N.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

Szipöcs, R.

Taft, G.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

Tempea, G.

G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, IEEE J. Sel. Topics Quantum Electron. 4, 193 (1998).
[CrossRef]

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, and K. Ferencz, Opt. Lett. 22, 1562 (1997).
[CrossRef]

Tilsch, M.

Trebino, R.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, IEEE J. Quantum Electron. 32, 1253 (1996).
[CrossRef]

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Tschudi, T.

Wei, Z.

Weiner, A. M.

A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
[CrossRef]

Wiersma, D. A.

Xu, L.

Appl. Opt. (1)

Appl. Phys. B (1)

R. Szipöcs and A. Köhazi-Kis, Appl. Phys. B 65, 115 (1997).

IEEE J. Quantum Electron. (3)

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, IEEE J. Quantum Electron. 32, 1253 (1996).
[CrossRef]

A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (2)

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbügel, J. N. Sweetser, and R. Trebino, IEEE J. Sel. Topics Quantum Electron. 2, 575 (1996).
[CrossRef]

G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, IEEE J. Sel. Topics Quantum Electron. 4, 193 (1998).
[CrossRef]

Opt. Lett. (6)

Opt. Photon. News (1)

F. Krausz, T. Brabec, M. Schnürer, and Ch. Spielmann, Opt. Photon. News 9(7), 46 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
[CrossRef]

Other (1)

To within the approximation described in the text, the expression given by relation (1) is more accurate than a similar simplified expression derived in Ref.??12, in that it accounts for all sum-frequency combinations ?1+?2 yielding contributions to a given detected spectral component S?,?, in contrast with the expression summarized by Eqs.??(3)–(5) in Ref.??12

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SH spectrum Sω,0 calculated from the measured spectrum of the 5-fs pulses, assuming the absence of chirp on the pulse and infinite PMB in the SHG crystal (dashed curve), and Sω,0 originating from 20μm-thick KDP and BBO crystals in the case of an infinite laser bandwidth.

Fig. 2
Fig. 2

Relative systematic errors introduced by time smearing and the finite PMB for 20μm-thick KDP and 20μm-thick BBO crystals.

Fig. 3
Fig. 3

(a) Measured and (b) retrieved FROG traces, Sω,τ, of the high-power pulses. The contour plots depict isointensity lines at the levels of 0.01×Sp and integer multiples of 0.1×Sp, where Sp is the peak of Sω,τ.

Fig. 4
Fig. 4

Pulse shape, spectrum, and phases retrieved from the FROG trace shown in Fig.  3(b).

Fig. 5
Fig. 5

(a) Measured interferometric autocorrelation trace (solid curve) and the calculated trace (dotted curve) from the retrieved FROG trace. (b) FROG frequency marginal (dotted curve) and the autoconvolution (solid curve) of the measured fundamental spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Sω,τχ22ω2ns2sinc2Δk0+ω-2ω0Δk1L2×-dωAω-ωAωexpiωτ2,

Metrics