Abstract

Wideband spectral phase correlation is demonstrated from a multiwavelength mode-locked semiconductor laser. By use of frequency-resolved optical gating techniques, significant phase correlation was observed between multiple intracavity oscillating wavelengths, with wavelength separations of 1 nm. The resultant temporal characteristics show a substantial modulation owing to the spectral coupling induced by intracavity-generated four-wave mixing. This result may lead to novel methods for directly generating ultrafast subpicosecond optical pulse sequences with spectrally tailored amplitude and phase characteristics from actively mode-locked semiconductor lasers.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
    [CrossRef]
  2. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
    [CrossRef]
  3. T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
    [CrossRef]
  4. H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, IEEE Photon. Technol. Lett. 9, 1439 (1997).
    [CrossRef]
  5. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 11, 2429 (1993).
  6. P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, Appl. Phys. Lett. 59, 10 (1991).
    [CrossRef]

1997 (1)

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, IEEE Photon. Technol. Lett. 9, 1439 (1997).
[CrossRef]

1995 (1)

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

1993 (2)

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 11, 2429 (1993).

1992 (1)

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[CrossRef]

1991 (1)

P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, Appl. Phys. Lett. 59, 10 (1991).
[CrossRef]

Alphonse, G.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[CrossRef]

Alphonse, G. A.

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, IEEE Photon. Technol. Lett. 9, 1439 (1997).
[CrossRef]

P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, Appl. Phys. Lett. 59, 10 (1991).
[CrossRef]

Andreadakis, N.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[CrossRef]

Connolly, J. C.

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, IEEE Photon. Technol. Lett. 9, 1439 (1997).
[CrossRef]

Delfyett, P. J.

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, IEEE Photon. Technol. Lett. 9, 1439 (1997).
[CrossRef]

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[CrossRef]

P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, Appl. Phys. Lett. 59, 10 (1991).
[CrossRef]

Finlay, J.

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, IEEE Photon. Technol. Lett. 9, 1439 (1997).
[CrossRef]

Florez, L. T.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[CrossRef]

Gmitter, T.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[CrossRef]

Hänsch, T. W.

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

Heritage, J. P.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[CrossRef]

Kane, D. J.

Mukai, T.

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

Shi, H.

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, IEEE Photon. Technol. Lett. 9, 1439 (1997).
[CrossRef]

Silberberg, Y.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[CrossRef]

P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, Appl. Phys. Lett. 59, 10 (1991).
[CrossRef]

Stoffel, N.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[CrossRef]

Trebino, R.

Weiner, A. M.

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Wynands, R.

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

P. J. Delfyett, Y. Silberberg, and G. A. Alphonse, Appl. Phys. Lett. 59, 10 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, Y. Silberberg, J. P. Heritage, and G. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, IEEE Photon. Technol. Lett. 9, 1439 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

T. Mukai, R. Wynands, and T. W. Hänsch, Opt. Commun. 95, 71 (1993).
[CrossRef]

Prog. Quantum Electron. (1)

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental SHG FROG spectrogram of the multiwavelength optical output, showing the complete FROG image across the entire temporal delay. (b) High-resolution FROG image with a period of 1/Δ, showing fine detail.

Fig. 2
Fig. 2

(a) Spectral field (solid curve) of a random spectral phase (dotted curve) four-wavelength spectrum, along with (b) the intensity autocorrelation and (c) the SHG FROG spectrogram.

Fig. 3
Fig. 3

(a) Spectral intensity (solid curve) of a four-wavelength spectrum with quadratic phase (dotted curve) owing to gain dynamics and intracavity GVD, along with (b) the theoretical SHG FROG autocorrelation and the experimentally measured autocorrelation trace and (c) the SHG FROG spectrogram.

Fig. 4
Fig. 4

(a) Spectrum of the four-wavelength mode-locked diode laser, showing the existence of a multiplicity of FWM sidebands. (b) Three overlaid spectra under two-wavelength mode-locked operation, highlighting the generation of the FWM sidebands with respect to the four wavelengths and showing the use of seeding spectral components to establish phase correlation.

Metrics