Abstract

We study collisions in dispersion-managed soliton propagation for wavelength-division multiplexing application at zero net dispersion when the Gordon–Haus timing jitter is removed. We show that the collisions can lead to group-velocity changes and spectral collapse. Large channel separation ameliorates the effects. Filters prevent spectral collapse but do not affect the velocity changes.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Suzuki, N. Edagawa, I. Morita, S. Yamamoto, and S. Akiba, J. Opt. Soc. Am. B 14, 2953 (1997).
    [CrossRef]
  2. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 23, 1726 (1997).
    [CrossRef]
  3. G. M. Carter, J. M. Jacob, C. R. Menyuk, E. A. Golovchenko, and A. N. Pilipetskii, Opt. Lett. 22, 513 (1997).
    [CrossRef] [PubMed]
  4. Y. Kodama, S. Kumar, and A. Maruta, Opt. Lett. 22, 1689 (1997).
    [CrossRef]
  5. V. S. Grigoryan and C. R. Menyuk, Opt. Lett. 23, 609 (1998).
    [CrossRef]
  6. A. M. Niculae, W. Forysiak, A. J. Gloag, J. H. B. Nijhof, and N. J. Doran, Opt. Lett. 23, 1354 (1998).
    [CrossRef]
  7. D. Leguen, A. O'Hare, S. Del Burgo, D. Grot, F. Favre, and T. Georges, in 24th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, New York, 1998), p. 59.
  8. J. P. Gordon and H. A. Haus, Opt. Lett. 11, 665 (1986).
    [CrossRef] [PubMed]
  9. Y. Chen and H. A. Haus, J. Opt. Soc. Am. B 16, 24 (1999).
    [CrossRef]
  10. L. F. Mollenauer, P. V. Mamyshev, and J. P. Gordon, Opt. Lett. 24, 220 (1999).
    [CrossRef]
  11. L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, J. Lightwave Technol. 9, 362 (1991).
    [CrossRef]

1999

1998

1997

1991

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, J. Lightwave Technol. 9, 362 (1991).
[CrossRef]

1986

Akiba, S.

Carter, G. M.

Chen, Y.

Del Burgo, S.

D. Leguen, A. O'Hare, S. Del Burgo, D. Grot, F. Favre, and T. Georges, in 24th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, New York, 1998), p. 59.

Doran, N. J.

A. M. Niculae, W. Forysiak, A. J. Gloag, J. H. B. Nijhof, and N. J. Doran, Opt. Lett. 23, 1354 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 23, 1726 (1997).
[CrossRef]

Edagawa, N.

Evangelides, S. G.

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, J. Lightwave Technol. 9, 362 (1991).
[CrossRef]

Favre, F.

D. Leguen, A. O'Hare, S. Del Burgo, D. Grot, F. Favre, and T. Georges, in 24th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, New York, 1998), p. 59.

Forysiak, W.

A. M. Niculae, W. Forysiak, A. J. Gloag, J. H. B. Nijhof, and N. J. Doran, Opt. Lett. 23, 1354 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 23, 1726 (1997).
[CrossRef]

Georges, T.

D. Leguen, A. O'Hare, S. Del Burgo, D. Grot, F. Favre, and T. Georges, in 24th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, New York, 1998), p. 59.

Gloag, A. J.

Golovchenko, E. A.

Gordon, J. P.

Grigoryan, V. S.

Grot, D.

D. Leguen, A. O'Hare, S. Del Burgo, D. Grot, F. Favre, and T. Georges, in 24th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, New York, 1998), p. 59.

Haus, H. A.

Jacob, J. M.

Knox, F. M.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 23, 1726 (1997).
[CrossRef]

Kodama, Y.

Kumar, S.

Leguen, D.

D. Leguen, A. O'Hare, S. Del Burgo, D. Grot, F. Favre, and T. Georges, in 24th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, New York, 1998), p. 59.

Mamyshev, P. V.

Maruta, A.

Menyuk, C. R.

Mollenauer, L. F.

L. F. Mollenauer, P. V. Mamyshev, and J. P. Gordon, Opt. Lett. 24, 220 (1999).
[CrossRef]

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, J. Lightwave Technol. 9, 362 (1991).
[CrossRef]

Morita, I.

Niculae, A. M.

Nijhof, J. H. B.

A. M. Niculae, W. Forysiak, A. J. Gloag, J. H. B. Nijhof, and N. J. Doran, Opt. Lett. 23, 1354 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 23, 1726 (1997).
[CrossRef]

O'Hare, A.

D. Leguen, A. O'Hare, S. Del Burgo, D. Grot, F. Favre, and T. Georges, in 24th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, New York, 1998), p. 59.

Pilipetskii, A. N.

Suzuki, M.

Yamamoto, S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Collision of two pulses with opposite net dispersion in the first cell of a periodic structure, PPN, case I, with channel separation 100  GHz, L=100 km, τFWHM=20 ps, T=1.762t/τFWHM. In the simulation we used k=20 ps2/km, net Δk=+-0.025 ps2/km for a positive (negative) pulse, which is equivalent to Δk=0 for both channels with zero third-order dispersion. The pulse energies are 0.48 and 0.54  pJ, respectively, for channels with net positive and negative dispersions.

Fig. 2
Fig. 2

Collision of two pulses as viewed at the center of a half-cell with negative dispersion, PPN, case I.

Fig. 3
Fig. 3

Same as Fig.  2 but with NPP, case II.

Fig. 4
Fig. 4

Collision of two pulses for case II (Fig.  3) with the filter passing the two channels. The filter transfer function is Gaussian with a bandwidth four times that of the pulses. The gain of 0.129  dB/cell is introduced to compensate for the filter loss.

Fig. 5
Fig. 5

Analytical prediction of channel frequency separation versus propagation distance compared with numerical simulations of Fig.  3.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

iuz-kz2u2t2+κu2u=0,
dΩdz=-κΩkWddzust+kΩz2ust-kΩz2dt,
δΩ=±κAs22kΩexp-2Ω2k2τ2zc2,
δtτ=±πκAs22kΩ2.
Δt=2Mδt=MπκAs2τ/k+Ω2.
Δ1vg=δtδz=πκAs2τ2Lk±Ω2.
zc=L2-t0k±Ω0-mπκAs2τk±2Ω03.
δΩn=2κAs2k±Ωn-1exp-2Ωn-12k±2τ2zc2,
Ω=Ω0-n=1NδΩn.

Metrics