Abstract

A novel technique for continuously programming an optical coherent transient spatial–spectral signal processor is proposed. The repeated application of two spatially distinct optical programming pulses to a nonpersistent hole-burning material writes an accumulated spatial–spectral population grating. An optical data stream is introduced on a third beam, resulting in a processor output signal that is spatially distinct from all the input pulses. Programming and processing take place simultaneously, asynchronously, and continuously. In the case of true-time delays, the efficiency that is achievable with currently available materials is of the order of that predicted for a perfect photon-gated device.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Mossberg, Opt. Lett. 7, 77 (1982).
    [CrossRef] [PubMed]
  2. Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
    [CrossRef]
  3. W. R. Babbitt and J. A. Bell, Appl. Opt. 33, 1538 (1994).
    [CrossRef] [PubMed]
  4. M. Zhu, W. R. Babbitt, and C. M. Jefferson, Opt. Lett. 20, 2514 (1995).
    [CrossRef]
  5. K. D. Merkel and W. R. Babbitt, Opt. Lett. 21, 1102 (1996).
    [CrossRef] [PubMed]
  6. K. D. Merkel and W. R. Babbitt, Opt. Lett. 23, 528 (1998).
    [CrossRef]
  7. W. E. Moerner, ed., Persistent Spectral Hole-burning:?Science and Applications, Vol.??44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988), and references therein.
    [CrossRef]
  8. W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).
    [CrossRef]
  9. K. D. Merkel and W. R. Babbitt, Opt. Commun. 128, 136 (1996).
    [CrossRef]
  10. U. Elman, B. Luo, and S. Kroll, J. Opt. Soc. Am. B 9, 1905 (1996).
    [CrossRef]
  11. J. A. Caird, L. G. Deshazer, and J. Nella, IEEE J. Quantum Electron. QE-11, 874 (1975).
    [CrossRef]
  12. R. M. Macfarlane, Opt. Lett. 18, 1958 (1993).
    [CrossRef]
  13. Y. Sun, Montana State University, Bozeman, Mont. 59717 (personal communication, November10, 1998).

1998 (1)

1996 (3)

K. D. Merkel and W. R. Babbitt, Opt. Commun. 128, 136 (1996).
[CrossRef]

U. Elman, B. Luo, and S. Kroll, J. Opt. Soc. Am. B 9, 1905 (1996).
[CrossRef]

K. D. Merkel and W. R. Babbitt, Opt. Lett. 21, 1102 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

1993 (1)

1984 (1)

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

1982 (1)

1981 (1)

W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).
[CrossRef]

1975 (1)

J. A. Caird, L. G. Deshazer, and J. Nella, IEEE J. Quantum Electron. QE-11, 874 (1975).
[CrossRef]

Babbitt, W. R.

Bai, Y. S.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Bell, J. A.

Caird, J. A.

J. A. Caird, L. G. Deshazer, and J. Nella, IEEE J. Quantum Electron. QE-11, 874 (1975).
[CrossRef]

Carlson, N. W.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Deshazer, L. G.

J. A. Caird, L. G. Deshazer, and J. Nella, IEEE J. Quantum Electron. QE-11, 874 (1975).
[CrossRef]

Elman, U.

U. Elman, B. Luo, and S. Kroll, J. Opt. Soc. Am. B 9, 1905 (1996).
[CrossRef]

Hesselink, W. H.

W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).
[CrossRef]

Jefferson, C. M.

Kroll, S.

U. Elman, B. Luo, and S. Kroll, J. Opt. Soc. Am. B 9, 1905 (1996).
[CrossRef]

Luo, B.

U. Elman, B. Luo, and S. Kroll, J. Opt. Soc. Am. B 9, 1905 (1996).
[CrossRef]

Macfarlane, R. M.

Merkel, K. D.

Mossberg, T. W.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

T. W. Mossberg, Opt. Lett. 7, 77 (1982).
[CrossRef] [PubMed]

Nella, J.

J. A. Caird, L. G. Deshazer, and J. Nella, IEEE J. Quantum Electron. QE-11, 874 (1975).
[CrossRef]

Sun, Y.

Y. Sun, Montana State University, Bozeman, Mont. 59717 (personal communication, November10, 1998).

Wiersma, D. A.

W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).
[CrossRef]

Zhu, M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. S. Bai, W. R. Babbitt, N. W. Carlson, and T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. A. Caird, L. G. Deshazer, and J. Nella, IEEE J. Quantum Electron. QE-11, 874 (1975).
[CrossRef]

J. Chem. Phys. (1)

W. H. Hesselink and D. A. Wiersma, J. Chem. Phys. 75, 4192 (1981).
[CrossRef]

J. Opt. Soc. Am. B (1)

U. Elman, B. Luo, and S. Kroll, J. Opt. Soc. Am. B 9, 1905 (1996).
[CrossRef]

Opt. Commun. (1)

K. D. Merkel and W. R. Babbitt, Opt. Commun. 128, 136 (1996).
[CrossRef]

Opt. Lett. (5)

Other (2)

Y. Sun, Montana State University, Bozeman, Mont. 59717 (personal communication, November10, 1998).

W. E. Moerner, ed., Persistent Spectral Hole-burning:?Science and Applications, Vol.??44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988), and references therein.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Perfect phase-matching geometry for three distinct input beams and the direction of emitted output signal k^s. (b) Schematic and parameters of a continuously programmed continuous processor, as a signal cross correlator. Pairs of programming pulses are repeated along beams  1 and 2 to accumulate a grating. In any pair, pulse  1, on beam  1, is a pattern waveform that interferes with pulse  2, on beam  2, a brief reference pulse. Once the grating is accumulated, a continuous waveform to be processed is introduced along beam  3. (c) Schematic of the emitted output signal that is due to the inputs in (b) in relation to the waveform on beam  3 after the IBT. Outputs along beams  1 and 2 are not shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Est-ts-ηs-E1*ΩE2ΩE3Ω×expiΩt-ts-ηsdΩ,
ωΔ=1-pexp-x11-exp-xB+βexp-xB-exp-x1/21-exp-xB-pexp-x11-exp-xB+β1-pexp-xB-exp-x1/2-1,

Metrics