Abstract

The output of two grating-stabilized external-cavity diode lasers was injected into a semiconductor tapered amplifier in a master oscillator – power amplifier (MOPA) configuration. At a wavelength of 671 nm this configuration produced 210 mW of power in a diffraction-limited mode with two frequency components of narrow linewidth. The frequency difference δ was varied from 20 MHz to 12 GHz, while the power ratio of the two components was freely adjustable. For δ <2 GHz additional frequency sidebands appear in the output of the MOPA. This configuration is a flexible and simple high-power cw laser source for light with multiple narrow-linewidth frequency components.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Hollberg and C. Wieman, Rev. Sci. Instrum. 62, 1 (1991).
    [CrossRef]
  2. J. N. Walpole, Opt. Quantum Electron. 28, 623 (1996).
    [CrossRef]
  3. Spectra Diode Laboratories, 1998 Semiconductor Laser Product Catalog (Spectra Diode Laboratories, San Jose, Calif., 1998).
  4. D. Mehuys, D. F. Welch, and L. Goldberg, Electron. Lett. 28, 1944 (1992).
    [CrossRef]
  5. F. Z. Cruz, M. Rauner, J. H. Marquart, L. Hollberg, and J. C. Bergquist, in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1995), p. 511.
  6. A. C. Wilson, J. C. Sharpe, C. R. McKenzie, P. J. Manson, and D. M. Warrington, Appl. Opt. 37, 4871 (1998).
    [CrossRef]
  7. W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (Springer-Verlag, Berlin, 1994), p. 286.
  8. W. Lenth, Opt. Lett. 8, 575 (1983).
    [CrossRef] [PubMed]
  9. In some cases it is possible to detect third-order sidebands: For R = 1 the relative power at ?1 ? 3? was ~1% for frequency differences ? from 20 to 100 MHz, whereas for R = 0.5 it was 0.3% at ? = 100 MHz. Only for ? = 20 MHz and R = 1 was it possible to detect a component at ?2 + 3? with a relative power of 1%.

1998 (1)

1996 (1)

J. N. Walpole, Opt. Quantum Electron. 28, 623 (1996).
[CrossRef]

1992 (1)

D. Mehuys, D. F. Welch, and L. Goldberg, Electron. Lett. 28, 1944 (1992).
[CrossRef]

1991 (1)

L. Hollberg and C. Wieman, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

1983 (1)

Bergquist, J. C.

F. Z. Cruz, M. Rauner, J. H. Marquart, L. Hollberg, and J. C. Bergquist, in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1995), p. 511.

Chow, W. W.

W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (Springer-Verlag, Berlin, 1994), p. 286.

Cruz, F. Z.

F. Z. Cruz, M. Rauner, J. H. Marquart, L. Hollberg, and J. C. Bergquist, in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1995), p. 511.

Goldberg, L.

D. Mehuys, D. F. Welch, and L. Goldberg, Electron. Lett. 28, 1944 (1992).
[CrossRef]

Hollberg, L.

L. Hollberg and C. Wieman, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

F. Z. Cruz, M. Rauner, J. H. Marquart, L. Hollberg, and J. C. Bergquist, in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1995), p. 511.

Koch, S. W.

W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (Springer-Verlag, Berlin, 1994), p. 286.

Lenth, W.

Manson, P. J.

Marquart, J. H.

F. Z. Cruz, M. Rauner, J. H. Marquart, L. Hollberg, and J. C. Bergquist, in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1995), p. 511.

McKenzie, C. R.

Mehuys, D.

D. Mehuys, D. F. Welch, and L. Goldberg, Electron. Lett. 28, 1944 (1992).
[CrossRef]

Rauner, M.

F. Z. Cruz, M. Rauner, J. H. Marquart, L. Hollberg, and J. C. Bergquist, in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1995), p. 511.

Sargent, M.

W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (Springer-Verlag, Berlin, 1994), p. 286.

Sharpe, J. C.

Walpole, J. N.

J. N. Walpole, Opt. Quantum Electron. 28, 623 (1996).
[CrossRef]

Warrington, D. M.

Welch, D. F.

D. Mehuys, D. F. Welch, and L. Goldberg, Electron. Lett. 28, 1944 (1992).
[CrossRef]

Wieman, C.

L. Hollberg and C. Wieman, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Wilson, A. C.

Appl. Opt. (1)

Electron. Lett. (1)

D. Mehuys, D. F. Welch, and L. Goldberg, Electron. Lett. 28, 1944 (1992).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

J. N. Walpole, Opt. Quantum Electron. 28, 623 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Hollberg and C. Wieman, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Other (4)

Spectra Diode Laboratories, 1998 Semiconductor Laser Product Catalog (Spectra Diode Laboratories, San Jose, Calif., 1998).

F. Z. Cruz, M. Rauner, J. H. Marquart, L. Hollberg, and J. C. Bergquist, in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1995), p. 511.

W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (Springer-Verlag, Berlin, 1994), p. 286.

In some cases it is possible to detect third-order sidebands: For R = 1 the relative power at ?1 ? 3? was ~1% for frequency differences ? from 20 to 100 MHz, whereas for R = 0.5 it was 0.3% at ? = 100 MHz. Only for ? = 20 MHz and R = 1 was it possible to detect a component at ?2 + 3? with a relative power of 1%.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. Two beams from low-power narrow-linewidth diode lasers L1 and L2 are superposed upon a polarizing cube. Components with identical polarizations are selected with the second polarizing cube and injected into the TA. The output of the TA is spatially filtered. The frequency and intensity components of the output are measured with a fast photodiode and a Fabry –Perot cavity, respectively. L’s, Geltec aspheric lenses with a N.A. of 0.55.

Fig. 2
Fig. 2

Intensity spectrum of the MOPA output measured with a Fabry –Perot spectrum analyzer with a frequency resolution of 5 MHz. ν1 is the frequency of the 2S1/2 → 2P3/2 optical transition in 7Li. a, The spectra were recorded for different power ratios R and δ = ν2ν1 = 10 GHz. For equal power at ν1 and ν2, ~0.2% of the total power was coupled into sidebands at ν1δ and ν2 + δ. b, Spectra are shown for δ = 100 MHz. The appearance of sidebands can be observed as R is changed from 0 to 1.

Fig. 3
Fig. 3

Fraction of the total power coupled into all sidebands at the MOPA output as a function of frequency difference δ for different power ratios R in the injected frequencies.

Fig. 4
Fig. 4

Fraction of the total power coupled into each sideband at the MOPA output as a function of frequency difference δ for different power ratios R in the injected frequencies. Significant sidebands appear at ν1δ, ν2 + δ, ν1 − 2δ, and ν2 + 2δ.9 Symbols are the same as in Fig. 3.

Metrics