Abstract

We observed backward second-harmonic and backward third-harmonic generation in a periodically poled KTiOPO4 waveguide using nanosecond laser pulses. The highest conversion efficiency achieved for the backward second-harmonic generation, occurring at the 25th-order grating, was 0.6%. The backward third-harmonic generation was the result of mixing the pump beam with the forward or the backward second-harmonic beam. Conversion efficiency of 0.4% was achieved at a pump wavelength of 1233.7  nm, where the two constituent nonlinear processes are both quasi-phase matched.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).
    [CrossRef]
  2. G. W. Ross, M. Pollnau, P. G. R. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, Opt. Lett. 23, 171 (1998).
    [CrossRef]
  3. N. Ramanujam and J. J. Burke, IEEE J. Quantum Electron. 33, 152 (1997).
    [CrossRef]
  4. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  5. S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
    [CrossRef]
  6. P. St. J. Russell, IEEE Quantum Electron. 27, 830 (1991).
    [CrossRef]
  7. Y. J. Ding and J. B. Khurgin, Opt. Lett. 21, 1445 (1996).
    [CrossRef] [PubMed]
  8. J. P. van der Ziel and M. Ilegems, Appl. Phys. Lett. 28, 437 (1976);S. Janz, C. Fernando, H. Dai, F. Chatenoud, M. Dion, and R. Normandin, Opt. Lett. 18, 589 (1993).
    [CrossRef]
  9. J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, Opt. Lett. 22, 862 (1997).
    [CrossRef] [PubMed]
  10. X. H. Gu, R. Y. Korotkov, Y. J. Ding, J. U. Kang, and J. B. Khurgin, J. Opt. Soc. Am. B 15, 1561 (1998).
    [CrossRef]
  11. X. H. Gu, Y. J. Ding, J. U. Kang, and J. B. Khurgin, Opt. Commun. 155, 323 (1998).
    [CrossRef]
  12. L. Goldberg and D. A. V. Klinear, Opt. Lett. 20, 1640 (1995).
    [CrossRef] [PubMed]
  13. M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, Electron. Lett. 30, 975 (1994).
    [CrossRef]
  14. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, Opt. Lett. 22, 1211 (1997).
    [CrossRef] [PubMed]
  15. Y. J. Ding, J. U. Kang, and J. B. Khurgin, IEEE J. Quantum Electron. 34, 966 (1998).
    [CrossRef]

1998

1997

1996

1995

1994

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, Electron. Lett. 30, 975 (1994).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1991

P. St. J. Russell, IEEE Quantum Electron. 27, 830 (1991).
[CrossRef]

1976

J. P. van der Ziel and M. Ilegems, Appl. Phys. Lett. 28, 437 (1976);S. Janz, C. Fernando, H. Dai, F. Chatenoud, M. Dion, and R. Normandin, Opt. Lett. 18, 589 (1993).
[CrossRef]

1966

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).
[CrossRef]

Bierlein, J. D.

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, Electron. Lett. 30, 975 (1994).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).
[CrossRef]

Bosenberg, W. R.

Britton, P. E.

Burke, J. J.

N. Ramanujam and J. J. Burke, IEEE J. Quantum Electron. 33, 152 (1997).
[CrossRef]

Burns, W. K.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Clarkson, W. A.

Ding, Y. J.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Goldberg, L.

Gu, X. H.

X. H. Gu, Y. J. Ding, J. U. Kang, and J. B. Khurgin, Opt. Commun. 155, 323 (1998).
[CrossRef]

X. H. Gu, R. Y. Korotkov, Y. J. Ding, J. U. Kang, and J. B. Khurgin, J. Opt. Soc. Am. B 15, 1561 (1998).
[CrossRef]

Hanna, D. C.

Harris, S. E.

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

Hollberg, L.

Ilegems, M.

J. P. van der Ziel and M. Ilegems, Appl. Phys. Lett. 28, 437 (1976);S. Janz, C. Fernando, H. Dai, F. Chatenoud, M. Dion, and R. Normandin, Opt. Lett. 18, 589 (1993).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kang, J. U.

X. H. Gu, R. Y. Korotkov, Y. J. Ding, J. U. Kang, and J. B. Khurgin, J. Opt. Soc. Am. B 15, 1561 (1998).
[CrossRef]

X. H. Gu, Y. J. Ding, J. U. Kang, and J. B. Khurgin, Opt. Commun. 155, 323 (1998).
[CrossRef]

Y. J. Ding, J. U. Kang, and J. B. Khurgin, IEEE J. Quantum Electron. 34, 966 (1998).
[CrossRef]

J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, Opt. Lett. 22, 862 (1997).
[CrossRef] [PubMed]

Khurgin, J. B.

X. H. Gu, R. Y. Korotkov, Y. J. Ding, J. U. Kang, and J. B. Khurgin, J. Opt. Soc. Am. B 15, 1561 (1998).
[CrossRef]

X. H. Gu, Y. J. Ding, J. U. Kang, and J. B. Khurgin, Opt. Commun. 155, 323 (1998).
[CrossRef]

Y. J. Ding, J. U. Kang, and J. B. Khurgin, IEEE J. Quantum Electron. 34, 966 (1998).
[CrossRef]

Y. J. Ding and J. B. Khurgin, Opt. Lett. 21, 1445 (1996).
[CrossRef] [PubMed]

Klinear, D. A. V.

Korotkov, R. Y.

Levenson, M. D.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Melinger, J. S.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).
[CrossRef]

Pfister, O.

Pollnau, M.

Ramanujam, N.

N. Ramanujam and J. J. Burke, IEEE J. Quantum Electron. 33, 152 (1997).
[CrossRef]

Ross, G. W.

Smith, P. G. R.

St. J. Russell, P.

P. St. J. Russell, IEEE Quantum Electron. 27, 830 (1991).
[CrossRef]

Stegeman, G. I.

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, Electron. Lett. 30, 975 (1994).
[CrossRef]

Sundheimer, M. L.

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, Electron. Lett. 30, 975 (1994).
[CrossRef]

Van Baak, D. A.

van der Ziel, J. P.

J. P. van der Ziel and M. Ilegems, Appl. Phys. Lett. 28, 437 (1976);S. Janz, C. Fernando, H. Dai, F. Chatenoud, M. Dion, and R. Normandin, Opt. Lett. 18, 589 (1993).
[CrossRef]

Villeneuve, A.

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, Electron. Lett. 30, 975 (1994).
[CrossRef]

Wells, J. S.

Zink, L.

Appl. Phys. Lett.

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[CrossRef]

J. P. van der Ziel and M. Ilegems, Appl. Phys. Lett. 28, 437 (1976);S. Janz, C. Fernando, H. Dai, F. Chatenoud, M. Dion, and R. Normandin, Opt. Lett. 18, 589 (1993).
[CrossRef]

Electron. Lett.

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, Electron. Lett. 30, 975 (1994).
[CrossRef]

IEEE J. Quantum Electron.

Y. J. Ding, J. U. Kang, and J. B. Khurgin, IEEE J. Quantum Electron. 34, 966 (1998).
[CrossRef]

N. Ramanujam and J. J. Burke, IEEE J. Quantum Electron. 33, 152 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

IEEE Quantum Electron.

P. St. J. Russell, IEEE Quantum Electron. 27, 830 (1991).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

X. H. Gu, Y. J. Ding, J. U. Kang, and J. B. Khurgin, Opt. Commun. 155, 323 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. A

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. A 127, 1918 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Phase-matching spectrum for backward SHG in a PPKTP waveguide. Arrows, theoretical calculations. (b) Backward SHG conversion efficiency versus peak pump intensity for the 25th grating. Triangles, measurements; solid curve, linear fitting.

Fig. 2
Fig. 2

Phase-matching spectrum for backward THG. The relative intensity of each peak is approximately proportional to the relative intensity of the backward TH beam at each order of gratings. Inset, two configurations for backward THG.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k2ω+2kω=2πm1/Λ,
3kω+k3ω=2πm2-1/Λ,
k3ω-k2ω+kω=2πm3/Λ,
η=J3ωJp=33χ024L4η02Ip2m12m32λ04n3ωn22ωn3ω,

Metrics