Abstract

The resolution limits of conventional optical lithography reflect the low-pass spatial-frequency numerical aperture NA/λ filter characteristics of the imaging system. Imaging interferometric lithography extends the resolution of optical lithography to the spatial-frequency limits of optics 2/λ. Off-axis illumination downshifts the high-frequency components of the mask pattern. An interferometric beam at the wafer upshifts these frequency components back to their original spatial frequencies following the lens. 2× reduction imaging interferometric lithography experiments demonstrate a continuous frequency coverage up to 3N.A./λ with a consequent threefold resolution enhancement.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. W. Liebmann, B. Grenon, M. Lavin, S. Schomody, and T. Zell, Proc. SPIE 2322, 229 (1994).
    [CrossRef]
  2. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron. Dev. ED-29, 1828 (1982).
    [CrossRef]
  3. K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
    [CrossRef]
  4. E. H. Anderson, C. M. Horowitz, and H. I. Smith, Appl. Phys. Lett. 43, 874 (1983).
    [CrossRef]
  5. S. H. Zaidi and S. R. J. Brueck, J. Vac. Sci. Technol. B 11, 658 (1993).
    [CrossRef]
  6. X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, J. Vac. Sci. Technol. B 14, 3339 (1996).
    [CrossRef]
  7. S. R. J. Brueck, Microlithogr. World 7(1), 2 (1998).
  8. X. Chen and S. R. J. Brueck, Proc. SPIE 3331, 214 (1998).
    [CrossRef]
  9. X. Chen and S. R. J. Brueck, J. Vac. Sci. Technol. 1316, 3392 (1998).
    [CrossRef]
  10. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

1998 (3)

S. R. J. Brueck, Microlithogr. World 7(1), 2 (1998).

X. Chen and S. R. J. Brueck, Proc. SPIE 3331, 214 (1998).
[CrossRef]

X. Chen and S. R. J. Brueck, J. Vac. Sci. Technol. 1316, 3392 (1998).
[CrossRef]

1996 (1)

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, J. Vac. Sci. Technol. B 14, 3339 (1996).
[CrossRef]

1994 (1)

L. W. Liebmann, B. Grenon, M. Lavin, S. Schomody, and T. Zell, Proc. SPIE 2322, 229 (1994).
[CrossRef]

1993 (1)

S. H. Zaidi and S. R. J. Brueck, J. Vac. Sci. Technol. B 11, 658 (1993).
[CrossRef]

1991 (1)

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

1983 (1)

E. H. Anderson, C. M. Horowitz, and H. I. Smith, Appl. Phys. Lett. 43, 874 (1983).
[CrossRef]

1982 (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron. Dev. ED-29, 1828 (1982).
[CrossRef]

Anderson, E. H.

E. H. Anderson, C. M. Horowitz, and H. I. Smith, Appl. Phys. Lett. 43, 874 (1983).
[CrossRef]

Brueck, S. R. J.

X. Chen and S. R. J. Brueck, Proc. SPIE 3331, 214 (1998).
[CrossRef]

X. Chen and S. R. J. Brueck, J. Vac. Sci. Technol. 1316, 3392 (1998).
[CrossRef]

S. R. J. Brueck, Microlithogr. World 7(1), 2 (1998).

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, J. Vac. Sci. Technol. B 14, 3339 (1996).
[CrossRef]

S. H. Zaidi and S. R. J. Brueck, J. Vac. Sci. Technol. B 11, 658 (1993).
[CrossRef]

Chen, X.

X. Chen and S. R. J. Brueck, J. Vac. Sci. Technol. 1316, 3392 (1998).
[CrossRef]

X. Chen and S. R. J. Brueck, Proc. SPIE 3331, 214 (1998).
[CrossRef]

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, J. Vac. Sci. Technol. B 14, 3339 (1996).
[CrossRef]

Devine, D. J.

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, J. Vac. Sci. Technol. B 14, 3339 (1996).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Grenon, B.

L. W. Liebmann, B. Grenon, M. Lavin, S. Schomody, and T. Zell, Proc. SPIE 2322, 229 (1994).
[CrossRef]

Horie, K.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Horowitz, C. M.

E. H. Anderson, C. M. Horowitz, and H. I. Smith, Appl. Phys. Lett. 43, 874 (1983).
[CrossRef]

Kamon, K.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Lavin, M.

L. W. Liebmann, B. Grenon, M. Lavin, S. Schomody, and T. Zell, Proc. SPIE 2322, 229 (1994).
[CrossRef]

Levenson, M. D.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron. Dev. ED-29, 1828 (1982).
[CrossRef]

Liebmann, L. W.

L. W. Liebmann, B. Grenon, M. Lavin, S. Schomody, and T. Zell, Proc. SPIE 2322, 229 (1994).
[CrossRef]

Miyamoto, T.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Myoi, Y.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Nagata, H.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Schomody, S.

L. W. Liebmann, B. Grenon, M. Lavin, S. Schomody, and T. Zell, Proc. SPIE 2322, 229 (1994).
[CrossRef]

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron. Dev. ED-29, 1828 (1982).
[CrossRef]

Smith, H. I.

E. H. Anderson, C. M. Horowitz, and H. I. Smith, Appl. Phys. Lett. 43, 874 (1983).
[CrossRef]

Tanaka, M.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron. Dev. ED-29, 1828 (1982).
[CrossRef]

Zaidi, S. H.

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, J. Vac. Sci. Technol. B 14, 3339 (1996).
[CrossRef]

S. H. Zaidi and S. R. J. Brueck, J. Vac. Sci. Technol. B 11, 658 (1993).
[CrossRef]

Zell, T.

L. W. Liebmann, B. Grenon, M. Lavin, S. Schomody, and T. Zell, Proc. SPIE 2322, 229 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

E. H. Anderson, C. M. Horowitz, and H. I. Smith, Appl. Phys. Lett. 43, 874 (1983).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron. Dev. ED-29, 1828 (1982).
[CrossRef]

J. Vac. Sci. Technol. (1)

X. Chen and S. R. J. Brueck, J. Vac. Sci. Technol. 1316, 3392 (1998).
[CrossRef]

J. Vac. Sci. Technol. B (2)

S. H. Zaidi and S. R. J. Brueck, J. Vac. Sci. Technol. B 11, 658 (1993).
[CrossRef]

X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, J. Vac. Sci. Technol. B 14, 3339 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Microlithogr. World (1)

S. R. J. Brueck, Microlithogr. World 7(1), 2 (1998).

Proc. SPIE (2)

X. Chen and S. R. J. Brueck, Proc. SPIE 3331, 214 (1998).
[CrossRef]

L. W. Liebmann, B. Grenon, M. Lavin, S. Schomody, and T. Zell, Proc. SPIE 2322, 229 (1994).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

2× reduction IIL system. A square pupil plane filter was used to yield a nearly diffraction-limited optical system. Two pinholes pass the 0th-order reference beams for the offset exposures.

Fig. 2
Fig. 2

Frequency-space picture of IIL. The large circle with 2/λ radius is the frequency space accessible by the optics. The sizes of the smaller circles (squares) are determined by the N.A. of the optical system, and the offset frequency is determined by the off-axis illumination angle.

Fig. 3
Fig. 3

Top, micrographs of the test patterns printed by three-exposure IIL. The label (mask size) below each of the test patterns was also resolved. Bottom, micrographs of the patterns printed by conventional coherent illumination.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ixx,y=exp-i2πfoffx+fxfyMfx,fy×Tcfx-foff,fyexpi2πfyy×expi2πfx-foffx2=fxfyMfx,fyTcfx-foff,fy×expi2πfyyexpi2πfxx+fxfyM*fx,fy×Tcfx-foff,fyexp-i2πfyyexp-i2πfxx+1+fxfy{fxfyMfx,fy×Tcfx-foff,fyM*fx,fy×Tcfx-foff,fyexpi2πfx-fxx×exp[i2πfy-fyy},

Metrics