Abstract

We present a Fourier-transform spectroscopic technique for investigation of surfaces and interfaces based on IR–visible sum-frequency generation with femtosecond light pulses. The observed spectrum has a resolution that is independent of the input pulse characteristics.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, Solid State Commun. 102, 221 (1997).
    [CrossRef]
  2. E. W. M. van der Ham, Q. H. F. Vrehen, and E. R. Eliel, Opt. Lett. 21, 1448 (1996).
    [CrossRef] [PubMed]
  3. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, Opt. Lett. 23, 1594 (1998).
    [CrossRef]
  4. P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy, Vol. 43 of Chemical Analysis Series (Wiley, New York, 1975).
  5. M. Bellini, A. Bartoli, and T. W. Hänsch, Opt. Lett. 22, 540 (1997).
    [CrossRef] [PubMed]
  6. R. Superfine, P. Guyot-Sionnest, J. H. Hunt, C. T. Kao, and Y. R. Shen, Surf. Sci. 200, L445 (1988).
    [CrossRef]

1998

1997

1996

1988

R. Superfine, P. Guyot-Sionnest, J. H. Hunt, C. T. Kao, and Y. R. Shen, Surf. Sci. 200, L445 (1988).
[CrossRef]

Bartoli, A.

Bellini, M.

Eliel, E. R.

Griffiths, P. R.

P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy, Vol. 43 of Chemical Analysis Series (Wiley, New York, 1975).

Guyot-Sionnest, P.

R. Superfine, P. Guyot-Sionnest, J. H. Hunt, C. T. Kao, and Y. R. Shen, Surf. Sci. 200, L445 (1988).
[CrossRef]

Hänsch, T. W.

Hunt, J. H.

R. Superfine, P. Guyot-Sionnest, J. H. Hunt, C. T. Kao, and Y. R. Shen, Surf. Sci. 200, L445 (1988).
[CrossRef]

Kao, C. T.

R. Superfine, P. Guyot-Sionnest, J. H. Hunt, C. T. Kao, and Y. R. Shen, Surf. Sci. 200, L445 (1988).
[CrossRef]

Petralli-Mallow, T. P.

Richter, L. J.

Shen, Y. R.

Y. R. Shen, Solid State Commun. 102, 221 (1997).
[CrossRef]

R. Superfine, P. Guyot-Sionnest, J. H. Hunt, C. T. Kao, and Y. R. Shen, Surf. Sci. 200, L445 (1988).
[CrossRef]

Stephenson, J. C.

Superfine, R.

R. Superfine, P. Guyot-Sionnest, J. H. Hunt, C. T. Kao, and Y. R. Shen, Surf. Sci. 200, L445 (1988).
[CrossRef]

van der Ham, E. W. M.

Vrehen, Q. H. F.

Opt. Lett.

Solid State Commun.

Y. R. Shen, Solid State Commun. 102, 221 (1997).
[CrossRef]

Surf. Sci.

R. Superfine, P. Guyot-Sionnest, J. H. Hunt, C. T. Kao, and Y. R. Shen, Surf. Sci. 200, L445 (1988).
[CrossRef]

Other

P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy, Vol. 43 of Chemical Analysis Series (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic drawing of the FT–SFG setup: double arrows, optical delay stages; BS, beam splitter; CP, compensator plate; PMT, photomultiplier. For details see text.

Fig. 2
Fig. 2

(a) FT–SFG interferometer trace, along with (b) its FT (squares) and the conventional picosecond SFG spectrum (circles). Polarization configuration, PPP.

Fig. 3
Fig. 3

(a) FT–SFG interferometer trace, along with (b) its FT (squares) and the conventional picosecond SFG spectrum (circles). Polarization configuration, SSP.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

EIRt-τIR+EIRt=-E˜IRωIR×exp-iωIRt-τIR+exp-iωIRtdωIR,
P2t,τiR,τV=2--χ2ω=ωV+ωIR:E˜VωVE˜IRωIRcos12ωIRτIRexp-iωIRt-τIR2×exp-iωVt-τVdωIRdωV.
P2t,τIR,τV=2-χ2ω=ωV+ωIR:Et-τVE˜IRωIRcos12ωIRτIR×exp-iωIRt-τIR2dωIR.
Pi2t,τIR,τV2dtdτV=4PV,iχijk2ω=ωV+ωIRE˜IR,kωIR2×cos212ωIRτIRdωIRSτIR,

Metrics