Abstract

Frequency stabilization of mid-IR quantum cascade (QC) lasers to the kilohertz level has been accomplished by use of electronic servo techniques. With this active feedback, an 8.5µm QC distributed-feedback laser is locked to the side of a rovibrational resonance of nitrous oxide N2O at 1176.61 cm-1. A stabilized frequency-noise spectral density of 42 Hz/Hz has been measured at 100 kHz; the calculated laser linewidth is 12 kHz.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
    [CrossRef] [PubMed]
  2. F. Capasso, C. Gmachl, D. Sivco, and A. H. Cho, Phys. World 12(6), 27 (1999).
  3. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 72, 1430 (1998).
    [CrossRef]
  4. S. L. Gilbert, Opt. Lett. 16, 150 (1991).
    [PubMed]
  5. P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, Appl. Phys. Lett. 71, 2731 (1997).
    [CrossRef]
  6. Side locking was used in this instance to demonstrate the ease of locking the QC laser with a simple technique. Pound–Drever–Hall modulation was also used, yielding similar results but over less bandwidth owing to some extra time delays. Frequency-modulated saturated absorption locking experiments are clearly the next stage for QC stabilization.
  7. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Opt. Lett. 23, 1396 (1998).
    [CrossRef]
  8. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. G. Gmachl, F. Capasso, J. N. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 178 (1999).
    [CrossRef]
  9. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Opt. Lett. 23, 219 (1998).
    [CrossRef]
  10. K. G. Libbrecht and J. L. Hall, Rev. Sci. Instrum. 64, 2133 (1993).
    [CrossRef]
  11. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, and M. A. H. Smith, J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992).
    [CrossRef]
  12. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
  13. Unlike the control–reference signal subtraction, the witness signal was measured directly. It was found unnecessary to subtract the reference signal here, as the impact of the amplitude noise was found to be negligible compared with the detector–preamplifier noise floor, as can be seen from Fig. 3.
  14. D. S. Elliott, R. Rajarshi, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
    [CrossRef]
  15. M. Zhu and J. L. Hall, J. Opt. Soc. Am. B 10, 802 (1993).
    [CrossRef]
  16. R. V. Pound, Rev. Sci. Instrum. 17, 490 (1946).
    [CrossRef] [PubMed]
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]

1999 (2)

1998 (3)

1997 (1)

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, Appl. Phys. Lett. 71, 2731 (1997).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

1993 (2)

K. G. Libbrecht and J. L. Hall, Rev. Sci. Instrum. 64, 2133 (1993).
[CrossRef]

M. Zhu and J. L. Hall, J. Opt. Soc. Am. B 10, 802 (1993).
[CrossRef]

1992 (1)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, and M. A. H. Smith, J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992).
[CrossRef]

1991 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1982 (1)

D. S. Elliott, R. Rajarshi, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
[CrossRef]

1946 (1)

R. V. Pound, Rev. Sci. Instrum. 17, 490 (1946).
[CrossRef] [PubMed]

Baillargeon, J. N.

Cai, S.

Capasso, F.

Cho, A. H.

F. Capasso, C. Gmachl, D. Sivco, and A. H. Cho, Phys. World 12(6), 27 (1999).

Cho, A. Y.

Chu, S. N. G.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 72, 1430 (1998).
[CrossRef]

De Natale, P.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, Appl. Phys. Lett. 71, 2731 (1997).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Elliott, D. S.

D. S. Elliott, R. Rajarshi, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
[CrossRef]

Faist, J.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 72, 1430 (1998).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Opt. Lett. 23, 219 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, and M. A. H. Smith, J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992).
[CrossRef]

Gilbert, S. L.

Gmachl, C.

F. Capasso, C. Gmachl, D. Sivco, and A. H. Cho, Phys. World 12(6), 27 (1999).

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Opt. Lett. 23, 219 (1998).
[CrossRef]

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Opt. Lett. 23, 1396 (1998).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 72, 1430 (1998).
[CrossRef]

Gmachl, C. G.

Hall, J. L.

M. Zhu and J. L. Hall, J. Opt. Soc. Am. B 10, 802 (1993).
[CrossRef]

K. G. Libbrecht and J. L. Hall, Rev. Sci. Instrum. 64, 2133 (1993).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Harren, F. J. M.

Hartman, J. S.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hutchinson, A. L.

B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. G. Gmachl, F. Capasso, J. N. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 178 (1999).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 72, 1430 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Kelly, J. F.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Laporta, P.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, Appl. Phys. Lett. 71, 2731 (1997).
[CrossRef]

Libbrecht, K. G.

K. G. Libbrecht and J. L. Hall, Rev. Sci. Instrum. 64, 2133 (1993).
[CrossRef]

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, Appl. Phys. Lett. 71, 2731 (1997).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Namjou, K.

Oomens, J.

Paldus, B. A.

Parker, D. H.

Pound, R. V.

R. V. Pound, Rev. Sci. Instrum. 17, 490 (1946).
[CrossRef] [PubMed]

Rajarshi, R.

D. S. Elliott, R. Rajarshi, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, and M. A. H. Smith, J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992).
[CrossRef]

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, and M. A. H. Smith, J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992).
[CrossRef]

Sharpe, S. W.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Sivco, D.

F. Capasso, C. Gmachl, D. Sivco, and A. H. Cho, Phys. World 12(6), 27 (1999).

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 72, 1430 (1998).
[CrossRef]

Sivco, D. L.

Sivco, J. N.

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, and M. A. H. Smith, J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992).
[CrossRef]

Smith, S. J.

D. S. Elliott, R. Rajarshi, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
[CrossRef]

Spence, T. G.

Svelto, C.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, Appl. Phys. Lett. 71, 2731 (1997).
[CrossRef]

Taccheo, S.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, Appl. Phys. Lett. 71, 2731 (1997).
[CrossRef]

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, and M. A. H. Smith, J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992).
[CrossRef]

Tredicucci, A.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 72, 1430 (1998).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Whittaker, E. A.

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).

Zare, R. N.

Zhu, M.

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. Lett. (2)

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 72, 1430 (1998).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, Appl. Phys. Lett. 71, 2731 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, and M. A. H. Smith, J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

D. S. Elliott, R. Rajarshi, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
[CrossRef]

Phys. World (1)

F. Capasso, C. Gmachl, D. Sivco, and A. H. Cho, Phys. World 12(6), 27 (1999).

Rev. Sci. Instrum. (2)

R. V. Pound, Rev. Sci. Instrum. 17, 490 (1946).
[CrossRef] [PubMed]

K. G. Libbrecht and J. L. Hall, Rev. Sci. Instrum. 64, 2133 (1993).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Other (3)

Side locking was used in this instance to demonstrate the ease of locking the QC laser with a simple technique. Pound–Drever–Hall modulation was also used, yielding similar results but over less bandwidth owing to some extra time delays. Frequency-modulated saturated absorption locking experiments are clearly the next stage for QC stabilization.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).

Unlike the control–reference signal subtraction, the witness signal was measured directly. It was found unnecessary to subtract the reference signal here, as the impact of the amplitude noise was found to be negligible compared with the detector–preamplifier noise floor, as can be seen from Fig. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic representation of the frequency-stabilization scheme based on molecular resonance side locking. WGP’s, wire grid polarizers; QCL, quantum cascade laser; λ/2, half-wave plate.

Fig. 2
Fig. 2

Relative time-domain signal levels from the witness beam. (a) Detector–preamplifier noise floor, (b) laser intensity fluctuations measured when the QC laser is tuned completely off resonance (thereby setting the frequency-to-amplitude discriminator slope to zero), (c) nonstabilized laser frequency fluctuations, (d) stabilized laser frequency fluctuations. The vertical scale is identical for (a)–(d).

Fig. 3
Fig. 3

Comparison of spectral noise data of the witness beam obtained with a rf spectrum analyzer (resolution bandwidth 3 kHz): (a) nonstabilized laser, (b) stabilized laser, (c) laser intensity noise. The dashed line represents the detector–preamplifier noise floor.

Metrics