Abstract

A 1-mm-diameter all-light atom guide capable of transporting ultracold atoms tens of centimeters with high efficiency is described. We made the atom tunnel, a dark hollow beam that is blue detuned from resonance, by passing a few tens of milliwatts of power from a TEM00 diode laser beam through an optical sequence composed of three axicons and a simple lens. We demonstrate transport of 108 Cs atoms approximately 20 cm with minimal heating. We show that it is possible for one to control the direction and speed of the atoms in the tunnel by varying the detuning of the tunnel beam.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. McClelland and M. R. Scheinfein, J. Opt. Soc. Am. B 8, 1974 (1991).
    [CrossRef]
  2. G. M. Gallatin and P. L. Gould, J. Opt. Soc. Am. B 8, 502 (1991).
    [CrossRef]
  3. S. Kuppens, M. Rauner, M. Schiffer, G. Wokurka, T. Slawinski, M. Zinner, K. Sengstock, and W. Ertmer, in Ultracold Atoms and Bose–Einstein Condensation, K. Burnett, ed., Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 102.
  4. J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).
  5. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 75, 3252 (1995); M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, Phys. Rev. A 53, R648 (1996).
    [CrossRef]
  6. I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
    [CrossRef]
  7. A. V. Mamaev, M. Saffman, and A. A. Zozulya, Phys. Rev. Lett. 77, 4544 (1996).
    [CrossRef] [PubMed]
  8. J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, Opt. Commun. 138, 287 (1997).
    [CrossRef]
  9. C. Wieman, G. Flowers, and S. Gilbert, Am. J. Phys. 63, 317 (1995).
    [CrossRef]
  10. A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
    [CrossRef]
  11. This is based on a collision cross section of 2×10-13 cm2, measured by C. R. Monroe, “title of paper,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1992).

1998 (2)

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
[CrossRef]

1997 (1)

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, Opt. Commun. 138, 287 (1997).
[CrossRef]

1996 (1)

A. V. Mamaev, M. Saffman, and A. A. Zozulya, Phys. Rev. Lett. 77, 4544 (1996).
[CrossRef] [PubMed]

1995 (2)

C. Wieman, G. Flowers, and S. Gilbert, Am. J. Phys. 63, 317 (1995).
[CrossRef]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 75, 3252 (1995); M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, Phys. Rev. A 53, R648 (1996).
[CrossRef]

1991 (2)

1978 (1)

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[CrossRef]

Anderson, D. Z.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 75, 3252 (1995); M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, Phys. Rev. A 53, R648 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[CrossRef]

Cornell, E. A.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 75, 3252 (1995); M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, Phys. Rev. A 53, R648 (1996).
[CrossRef]

Ertmer, W.

S. Kuppens, M. Rauner, M. Schiffer, G. Wokurka, T. Slawinski, M. Zinner, K. Sengstock, and W. Ertmer, in Ultracold Atoms and Bose–Einstein Condensation, K. Burnett, ed., Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 102.

Flowers, G.

C. Wieman, G. Flowers, and S. Gilbert, Am. J. Phys. 63, 317 (1995).
[CrossRef]

Gallatin, G. M.

Gilbert, S.

C. Wieman, G. Flowers, and S. Gilbert, Am. J. Phys. 63, 317 (1995).
[CrossRef]

Gould, P. L.

Grimm, R.

I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
[CrossRef]

Jhe, W.

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, Opt. Commun. 138, 287 (1997).
[CrossRef]

Kim, K.

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, Opt. Commun. 138, 287 (1997).
[CrossRef]

Kuppens, S.

S. Kuppens, M. Rauner, M. Schiffer, G. Wokurka, T. Slawinski, M. Zinner, K. Sengstock, and W. Ertmer, in Ultracold Atoms and Bose–Einstein Condensation, K. Burnett, ed., Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 102.

Lee, K.

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, Opt. Commun. 138, 287 (1997).
[CrossRef]

Lin, Y.

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

Mamaev, A. V.

A. V. Mamaev, M. Saffman, and A. A. Zozulya, Phys. Rev. Lett. 77, 4544 (1996).
[CrossRef] [PubMed]

Manek, I.

I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
[CrossRef]

McClelland, J. J.

Monroe, C. R.

This is based on a collision cross section of 2×10-13 cm2, measured by C. R. Monroe, “title of paper,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1992).

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 75, 3252 (1995); M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, Phys. Rev. A 53, R648 (1996).
[CrossRef]

Nha, H.

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

Noh, H.

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, Opt. Commun. 138, 287 (1997).
[CrossRef]

Oh, K.

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

Ovchinnikov, Y. B.

I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
[CrossRef]

Paek, U.

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

Rauner, M.

S. Kuppens, M. Rauner, M. Schiffer, G. Wokurka, T. Slawinski, M. Zinner, K. Sengstock, and W. Ertmer, in Ultracold Atoms and Bose–Einstein Condensation, K. Burnett, ed., Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 102.

Renn, M. J.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 75, 3252 (1995); M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, Phys. Rev. A 53, R648 (1996).
[CrossRef]

Saffman, M.

A. V. Mamaev, M. Saffman, and A. A. Zozulya, Phys. Rev. Lett. 77, 4544 (1996).
[CrossRef] [PubMed]

Scheinfein, M. R.

Schiffer, M.

S. Kuppens, M. Rauner, M. Schiffer, G. Wokurka, T. Slawinski, M. Zinner, K. Sengstock, and W. Ertmer, in Ultracold Atoms and Bose–Einstein Condensation, K. Burnett, ed., Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 102.

Sengstock, K.

S. Kuppens, M. Rauner, M. Schiffer, G. Wokurka, T. Slawinski, M. Zinner, K. Sengstock, and W. Ertmer, in Ultracold Atoms and Bose–Einstein Condensation, K. Burnett, ed., Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 102.

Slawinski, T.

S. Kuppens, M. Rauner, M. Schiffer, G. Wokurka, T. Slawinski, M. Zinner, K. Sengstock, and W. Ertmer, in Ultracold Atoms and Bose–Einstein Condensation, K. Burnett, ed., Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 102.

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 75, 3252 (1995); M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, Phys. Rev. A 53, R648 (1996).
[CrossRef]

Wang, Y.

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, Opt. Commun. 138, 287 (1997).
[CrossRef]

Wieman, C.

C. Wieman, G. Flowers, and S. Gilbert, Am. J. Phys. 63, 317 (1995).
[CrossRef]

Wieman, C. E.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 75, 3252 (1995); M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, Phys. Rev. A 53, R648 (1996).
[CrossRef]

Wokurka, G.

S. Kuppens, M. Rauner, M. Schiffer, G. Wokurka, T. Slawinski, M. Zinner, K. Sengstock, and W. Ertmer, in Ultracold Atoms and Bose–Einstein Condensation, K. Burnett, ed., Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 102.

Yin, J.

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, Opt. Commun. 138, 287 (1997).
[CrossRef]

Zinner, M.

S. Kuppens, M. Rauner, M. Schiffer, G. Wokurka, T. Slawinski, M. Zinner, K. Sengstock, and W. Ertmer, in Ultracold Atoms and Bose–Einstein Condensation, K. Burnett, ed., Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 102.

Zozulya, A. A.

A. V. Mamaev, M. Saffman, and A. A. Zozulya, Phys. Rev. Lett. 77, 4544 (1996).
[CrossRef] [PubMed]

Am. J. Phys. (1)

C. Wieman, G. Flowers, and S. Gilbert, Am. J. Phys. 63, 317 (1995).
[CrossRef]

J. Korean Phys. Soc. (1)

J. Yin, Y. Lin, K. Lee, H. Nha, H. Noh, Y. Wang, K. Oh, U. Paek, and W. Jhe, J. Korean Phys. Soc. 33, 362 (1998).

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

I. Manek, Y. B. Ovchinnikov, and R. Grimm, Opt. Commun. 147, 67 (1998).
[CrossRef]

J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, Opt. Commun. 138, 287 (1997).
[CrossRef]

Phys. Rev. Lett. (3)

A. V. Mamaev, M. Saffman, and A. A. Zozulya, Phys. Rev. Lett. 77, 4544 (1996).
[CrossRef] [PubMed]

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[CrossRef]

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 75, 3252 (1995); M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, Phys. Rev. A 53, R648 (1996).
[CrossRef]

Other (2)

S. Kuppens, M. Rauner, M. Schiffer, G. Wokurka, T. Slawinski, M. Zinner, K. Sengstock, and W. Ertmer, in Ultracold Atoms and Bose–Einstein Condensation, K. Burnett, ed., Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 102.

This is based on a collision cross section of 2×10-13 cm2, measured by C. R. Monroe, “title of paper,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

1-mm hollow-core beam intensity distribution at the position of the MOT (graph and bottom inset) and optical components for hollow-core beam generation (top inset). Three axicons A1A3, each with a 3° base angle and a 400-mm focal-length lens (L), were employed to generate the hollow core. The spacing between the elements, from left to right, was 44, 5, and 55 cm. The incident TEM00 beam was diffraction limited, with a divergence of 3 mrad and a spot size of 2.3 mm at A1.

Fig. 2
Fig. 2

Shadow images of the atom cloud in the all-light guide: (a) transverse view of the cloud from 0 to 35 ms without the repumping beam and (b) longitudinal view from 0 to 150 ms with the repumping beam. In (a), the center of mass accelerates at 15 m/s2. In both cases the tunnel beam was directed parallel to gravity and detuned 1.5 GHz to the blue of resonance.

Fig. 3
Fig. 3

Position of the center of mass of the cloud versus time at various detunings and orientations of the tunnel beam relative to gravity. The top three traces represent the tunnel beam antiparallel to gravity with detuning: () 0.25 GHz, () 1 GHz, ( 1.75 GHz. The bottom two traces represent the tunnel beam parallel to gravity with detuning: + 1.75 GHz, × 0.25 GHz. The magnitude of the uncertainty in these measurements is approximately the size of the symbols.

Fig. 4
Fig. 4

Number of atoms in the tunnel versus time from longitudinal images [similar to Fig. 2(b)] with the repumper, without the repumper, and in the presence of the repumper but with the kicker beam placed 10 cm below the MOT.

Metrics