Abstract

We report a simple optical pulse-compression technique based on quadratic nonlinear media. Negative nonlinear phase shifts are generated by phase-mismatched second-harmonic generation, and the phase-modulated pulses are then compressed by propagation through materials with normal dispersion. Millijoule-energy pulses from a Ti:sapphire amplifier are compressed from 120 to 30 fs, and calculations indicate that compression ratios of >10 are realistically achievable by use of this approach with optimal materials. The insertion loss of the compressor can be less than 10% of the pulse energy, and scaling to higher pulse energies will be straightforward.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Squier, F. Salin, G. Mourou, and D. Harter, Opt. Lett. 16, 324 (1991).
    [CrossRef] [PubMed]
  2. C. Rolland and P. B. Corkum, J. Opt. Soc. Am. B 5, 641 (1988).
    [CrossRef]
  3. M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
    [CrossRef]
  4. Y. Wang and B. Luther-Davies, Opt. Lett. 17, 1459 (1992).
    [CrossRef]
  5. A. Dubietis, G. Valiulis, R. Danielius, and A. Piskarskas, Opt. Lett. 21, 1262 (1996).
    [CrossRef] [PubMed]
  6. A. Dubietis, G. Valiulis, G. Tamosauskas, R. Danielius, and A. Piskarskas, Opt. Lett. 22, 1071 (1997).
    [CrossRef] [PubMed]
  7. H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
    [CrossRef] [PubMed]
  8. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, and H. Vanherzeele, Opt. Lett. 17, 28 (1992).
    [CrossRef] [PubMed]
  9. P. Vidakovic, D. L. Lovering, A. Levenson, J. Webjorn, and P. St. J. Russell, Opt. Lett. 22, 277 (1997).
    [CrossRef]
  10. L. J. Qian, X. Liu, and F. W. Wise, Opt. Lett. 24, 166 (1999).
    [CrossRef]
  11. X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
    [CrossRef]
  12. For example, see C. P. J. Barty, C. L. Gordon, and B. E. Lemoff, Opt. Lett. 19, 1442 (1994).
    [CrossRef] [PubMed]

1999 (2)

L. J. Qian, X. Liu, and F. W. Wise, Opt. Lett. 24, 166 (1999).
[CrossRef]

X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

1997 (2)

1996 (2)

A. Dubietis, G. Valiulis, R. Danielius, and A. Piskarskas, Opt. Lett. 21, 1262 (1996).
[CrossRef] [PubMed]

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

1994 (1)

1992 (2)

1991 (1)

1990 (1)

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

1988 (1)

Bakker, H. J.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Barty, C. P. J.

Corkum, P. B.

Danielius, R.

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

DeSalvo, R.

Dubietis, A.

Gordon, C. L.

Hagan, D. J.

Harter, D.

Kuipers, L.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Lagendijk, A.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Lemoff, B. E.

Levenson, A.

Liu, X.

X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

L. J. Qian, X. Liu, and F. W. Wise, Opt. Lett. 24, 166 (1999).
[CrossRef]

Lovering, D. L.

Luther-Davies, B.

Mourou, G.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Piskarskas, A.

Planken, P. C. M.

H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Phys. Rev. A 42, 4085 (1990).
[CrossRef] [PubMed]

Qian, L. J.

X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

L. J. Qian, X. Liu, and F. W. Wise, Opt. Lett. 24, 166 (1999).
[CrossRef]

Rolland, C.

Russell, P. St. J.

Salin, F.

Sheik-Bahae, M.

Squier, J.

Stegeman, G.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Tamosauskas, G.

Valiulis, G.

Vanherzeele, H.

Vidakovic, P.

Wang, Y.

Webjorn, J.

Wise, F. W.

X. Liu, L. J. Qian, and F. W. Wise, Phys. Rev. Lett. 82, 4631 (1999).
[CrossRef]

L. J. Qian, X. Liu, and F. W. Wise, Opt. Lett. 24, 166 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Calculated spectrum and (b) intensity profile of the compressed pulse. Dashed curves, the input pulse.

Fig. 2
Fig. 2

(a) Measured spectrum and (b) autocorrelation (symbols) of the compressed pulse. The autocorrelation of the transform-limited pulse in (c) derived from the measured spectrum is also shown (solid curve) in (b) for comparison. (a), (b) Dashed curves, the input pulse. The temporal phases of the pulse before (dashed curve) and after (solid curve) the dispersive propagation stage are shown in (d), with the compressed pulse intensity shown (dotted curve) for reference. Note that the pulse duration is 140 fs before GVD compensation.

Fig. 3
Fig. 3

(a) Calculated spectra and (b) intensity profiles for compression of a 200-fs pulse at 1.55 µm. A 2-cm periodically poled LiNbO3 crystal is assumed, with incident intensity 20 GW/cm2 and ΔkL=+800π. Dashed curves, the input pulse.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔΦNL-Γ2L2ΔkL,
zE1=iE1*E2 expiΔkz+i2πn2I0×LNLλE12+2E22E1, z+LNLLGVMtE2=iE1E1 exp-iΔkz+i4πn2I0×LNLλ2E12+E22E2,

Metrics