Abstract

Laser-induced fluorescence (LIF) and two-dimensional laser-induced fluorescence were used for measurement of the fluorescence lifetime of the AΣ+1 state of BaO molecules in the laser-ablation process of BaTiO3 and YBa2Cu3O7x in the oxygen background gas. The zero-pressure lifetime and the quenching rate were also determined as τ0=357 ns and k=5.1×10-6 ns-1 mTorr-1, respectively. The spatiotemporal changes of the collisional quenching of BaO molecules were successfully visualized, and the influence of the quenching on the spatial distribution imaging of BaO molecule was corrected.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, J. Appl. Phys. 80, 2458 (1996).
    [Crossref]
  2. J. Muramoto, Y. Nakata, T. Okada, and M. Maeda, Appl. Surf. Sci. 127, 373 (1998).
  3. T. Okada, Y. Nakata, J. Muramoto, and M. Maeda, Proc. SPIE 3274, 246 (1998).
    [Crossref]
  4. D. Stepowski and M. J. Cottereau, Combust. Flame 65–70, 65 (1981).
    [Crossref]
  5. J. J. Hinchen, J. Chem. Phys. 99, 4403 (1993).
  6. L. Magne, G. Cernogora, and P. Veis, J. Phys. D 25, 472 (1992).
    [Crossref]
  7. N. Van Veen, P. Brewer, P. Das, and R. Bersohn, J. Chem. Phys. 77, 4326 (1982).
  8. P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, and E. Rothe, Appl. Opt. 29, 2392 (1990).
    [Crossref] [PubMed]
  9. R. P. Lucht, D. W. Sweeney, and N. M. Laurendeau, Combust. Flame 50, 189 (1983).
    [Crossref]
  10. S. E. Johnson, J. Chem. Phys. 56, 149 (1972).
  11. A. Schultz, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 57, 1354 (1972).
  12. M. Tsujishita and A. Hirano, Appl. Phys. B 62, 255 (1996).
    [Crossref]
  13. W. K. A. Kumuduni, Y. Nakayama, Y. Nakata, T. Okada, and M. Maeda, J. Appl. Phys. 74, 7510 (1993).
    [Crossref]

1998 (2)

J. Muramoto, Y. Nakata, T. Okada, and M. Maeda, Appl. Surf. Sci. 127, 373 (1998).

T. Okada, Y. Nakata, J. Muramoto, and M. Maeda, Proc. SPIE 3274, 246 (1998).
[Crossref]

1996 (2)

M. Tsujishita and A. Hirano, Appl. Phys. B 62, 255 (1996).
[Crossref]

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, J. Appl. Phys. 80, 2458 (1996).
[Crossref]

1993 (2)

W. K. A. Kumuduni, Y. Nakayama, Y. Nakata, T. Okada, and M. Maeda, J. Appl. Phys. 74, 7510 (1993).
[Crossref]

J. J. Hinchen, J. Chem. Phys. 99, 4403 (1993).

1992 (1)

L. Magne, G. Cernogora, and P. Veis, J. Phys. D 25, 472 (1992).
[Crossref]

1990 (1)

1983 (1)

R. P. Lucht, D. W. Sweeney, and N. M. Laurendeau, Combust. Flame 50, 189 (1983).
[Crossref]

1982 (1)

N. Van Veen, P. Brewer, P. Das, and R. Bersohn, J. Chem. Phys. 77, 4326 (1982).

1981 (1)

D. Stepowski and M. J. Cottereau, Combust. Flame 65–70, 65 (1981).
[Crossref]

1972 (2)

S. E. Johnson, J. Chem. Phys. 56, 149 (1972).

A. Schultz, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 57, 1354 (1972).

Andresen, P.

Bersohn, R.

N. Van Veen, P. Brewer, P. Das, and R. Bersohn, J. Chem. Phys. 77, 4326 (1982).

Brewer, P.

N. Van Veen, P. Brewer, P. Das, and R. Bersohn, J. Chem. Phys. 77, 4326 (1982).

Cernogora, G.

L. Magne, G. Cernogora, and P. Veis, J. Phys. D 25, 472 (1992).
[Crossref]

Cottereau, M. J.

D. Stepowski and M. J. Cottereau, Combust. Flame 65–70, 65 (1981).
[Crossref]

Cruse, H. W.

A. Schultz, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 57, 1354 (1972).

Das, P.

N. Van Veen, P. Brewer, P. Das, and R. Bersohn, J. Chem. Phys. 77, 4326 (1982).

Hentschel, W.

Hinchen, J. J.

J. J. Hinchen, J. Chem. Phys. 99, 4403 (1993).

Hirano, A.

M. Tsujishita and A. Hirano, Appl. Phys. B 62, 255 (1996).
[Crossref]

Johnson, S. E.

S. E. Johnson, J. Chem. Phys. 56, 149 (1972).

Kaibara, H.

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, J. Appl. Phys. 80, 2458 (1996).
[Crossref]

Koch, A.

Kumuduni, W. K. A.

W. K. A. Kumuduni, Y. Nakayama, Y. Nakata, T. Okada, and M. Maeda, J. Appl. Phys. 74, 7510 (1993).
[Crossref]

Laurendeau, N. M.

R. P. Lucht, D. W. Sweeney, and N. M. Laurendeau, Combust. Flame 50, 189 (1983).
[Crossref]

Lucht, R. P.

R. P. Lucht, D. W. Sweeney, and N. M. Laurendeau, Combust. Flame 50, 189 (1983).
[Crossref]

Maeda, M.

J. Muramoto, Y. Nakata, T. Okada, and M. Maeda, Appl. Surf. Sci. 127, 373 (1998).

T. Okada, Y. Nakata, J. Muramoto, and M. Maeda, Proc. SPIE 3274, 246 (1998).
[Crossref]

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, J. Appl. Phys. 80, 2458 (1996).
[Crossref]

W. K. A. Kumuduni, Y. Nakayama, Y. Nakata, T. Okada, and M. Maeda, J. Appl. Phys. 74, 7510 (1993).
[Crossref]

Magne, L.

L. Magne, G. Cernogora, and P. Veis, J. Phys. D 25, 472 (1992).
[Crossref]

Meijer, G.

Muramoto, J.

J. Muramoto, Y. Nakata, T. Okada, and M. Maeda, Appl. Surf. Sci. 127, 373 (1998).

T. Okada, Y. Nakata, J. Muramoto, and M. Maeda, Proc. SPIE 3274, 246 (1998).
[Crossref]

Nakata, Y.

J. Muramoto, Y. Nakata, T. Okada, and M. Maeda, Appl. Surf. Sci. 127, 373 (1998).

T. Okada, Y. Nakata, J. Muramoto, and M. Maeda, Proc. SPIE 3274, 246 (1998).
[Crossref]

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, J. Appl. Phys. 80, 2458 (1996).
[Crossref]

W. K. A. Kumuduni, Y. Nakayama, Y. Nakata, T. Okada, and M. Maeda, J. Appl. Phys. 74, 7510 (1993).
[Crossref]

Nakayama, Y.

W. K. A. Kumuduni, Y. Nakayama, Y. Nakata, T. Okada, and M. Maeda, J. Appl. Phys. 74, 7510 (1993).
[Crossref]

Okada, T.

J. Muramoto, Y. Nakata, T. Okada, and M. Maeda, Appl. Surf. Sci. 127, 373 (1998).

T. Okada, Y. Nakata, J. Muramoto, and M. Maeda, Proc. SPIE 3274, 246 (1998).
[Crossref]

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, J. Appl. Phys. 80, 2458 (1996).
[Crossref]

W. K. A. Kumuduni, Y. Nakayama, Y. Nakata, T. Okada, and M. Maeda, J. Appl. Phys. 74, 7510 (1993).
[Crossref]

Oppermann, W.

Rothe, E.

Schlüter, H.

Schultz, A.

A. Schultz, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 57, 1354 (1972).

Stepowski, D.

D. Stepowski and M. J. Cottereau, Combust. Flame 65–70, 65 (1981).
[Crossref]

Sweeney, D. W.

R. P. Lucht, D. W. Sweeney, and N. M. Laurendeau, Combust. Flame 50, 189 (1983).
[Crossref]

Tsujishita, M.

M. Tsujishita and A. Hirano, Appl. Phys. B 62, 255 (1996).
[Crossref]

Van Veen, N.

N. Van Veen, P. Brewer, P. Das, and R. Bersohn, J. Chem. Phys. 77, 4326 (1982).

Veis, P.

L. Magne, G. Cernogora, and P. Veis, J. Phys. D 25, 472 (1992).
[Crossref]

Voges, H.

Zare, R. N.

A. Schultz, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 57, 1354 (1972).

Appl. Opt. (1)

Appl. Phys. B (1)

M. Tsujishita and A. Hirano, Appl. Phys. B 62, 255 (1996).
[Crossref]

Appl. Surf. Sci. (1)

J. Muramoto, Y. Nakata, T. Okada, and M. Maeda, Appl. Surf. Sci. 127, 373 (1998).

Combust. Flame (2)

D. Stepowski and M. J. Cottereau, Combust. Flame 65–70, 65 (1981).
[Crossref]

R. P. Lucht, D. W. Sweeney, and N. M. Laurendeau, Combust. Flame 50, 189 (1983).
[Crossref]

J. Appl. Phys. (2)

W. K. A. Kumuduni, Y. Nakayama, Y. Nakata, T. Okada, and M. Maeda, J. Appl. Phys. 74, 7510 (1993).
[Crossref]

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, J. Appl. Phys. 80, 2458 (1996).
[Crossref]

J. Chem. Phys. (4)

N. Van Veen, P. Brewer, P. Das, and R. Bersohn, J. Chem. Phys. 77, 4326 (1982).

S. E. Johnson, J. Chem. Phys. 56, 149 (1972).

A. Schultz, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 57, 1354 (1972).

J. J. Hinchen, J. Chem. Phys. 99, 4403 (1993).

J. Phys. D (1)

L. Magne, G. Cernogora, and P. Veis, J. Phys. D 25, 472 (1992).
[Crossref]

Proc. SPIE (1)

T. Okada, Y. Nakata, J. Muramoto, and M. Maeda, Proc. SPIE 3274, 246 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fluorescence lifetime of the AΣ+1 state of BaO molecule as a function of delay time after ablation for different oxygen pressures, measured at 30 mm from the target surface. A Stern–Volmer plot is shown in the inset.

Fig. 2
Fig. 2

Spatial mapping of collisional lifetime τ of BaO. The oxygen gas pressure was 300 mTorr.

Fig. 3
Fig. 3

Spatial mapping of quantum yield. The oxygen gas pressure was 300 mTorr.

Fig. 4
Fig. 4

Quenching-free spatial distributions of BaO molecules. The oxygen gas pressure was 300 mTorr.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

It=I0 exp-t/τ,
Iintt10t1Itdt=τI01-exp-t1/τ,
τqτ0+τq1,

Metrics