Abstract

The interaction of spatial soliton pairs with a nonlinear interface was studied theoretically. With mediation of the interface, the two solitons exhibited efficient switching and double switching. A closed-form particlelike model, validated by propagation calculations, yielded the soliton trajectories and switching characteristics.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. K. Gustafson and P. W. Smith, eds., Photonic Switching (Springer-Verlag, Berlin, 1988).
    [Crossref]
  2. J. P. Sabini, N. Finlayson, and G. I. Stegeman, Appl. Phys. Lett. 55, 1176 (1989).
    [Crossref]
  3. T. T. Shi and S. Chi, Opt. Lett. 15, 1123 (1990).
    [Crossref] [PubMed]
  4. L. Lefort and A. Barthelemy, IEEE Photon. Technol. Lett. 9, 1364 (1997).
    [Crossref]
  5. A. E. Kaplan, JETP Lett. 24, 114 (1976).
  6. A. B. Aceves, P. Varatharajah, A. C. Newell, E. M. Wright, G. I. Stegman, D. R. Heatley, J. V. Moloney, and H. Adachihara, J. Opt. Soc. Am. B 7, 963 (1990); E. Alvarado-Mendez, G. E. Torres-Cisneros, M. Torres-Cisneros, J. J. Sanchez-Mondragon, and V. Vysloukh, Opt. Quantum Electron. 30, 687 (1998).
    [Crossref]
  7. M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Diporto, Opt. Lett. 21, 1436 (1996); M. Shih, Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, Appl. Phys. Lett. 69, 4151 (1996).
    [Crossref]
  8. M. Karlsson, D. Anderson, A. Höök, and M. Lisak, Phys. Scr. 50, 265 (1994).
    [Crossref]
  9. C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and S. D. Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).
    [Crossref]
  10. A. Hasegawa, Optical Solitons in Fibers, 2nd ed. (Springer-Verlag, Berlin, 1990).
    [Crossref]

1997 (1)

L. Lefort and A. Barthelemy, IEEE Photon. Technol. Lett. 9, 1364 (1997).
[Crossref]

1996 (1)

1994 (1)

M. Karlsson, D. Anderson, A. Höök, and M. Lisak, Phys. Scr. 50, 265 (1994).
[Crossref]

1990 (2)

1989 (1)

J. P. Sabini, N. Finlayson, and G. I. Stegeman, Appl. Phys. Lett. 55, 1176 (1989).
[Crossref]

1985 (1)

C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and S. D. Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).
[Crossref]

1976 (1)

A. E. Kaplan, JETP Lett. 24, 114 (1976).

Aceves, A. B.

Adachihara, H.

Anderson, D.

M. Karlsson, D. Anderson, A. Höök, and M. Lisak, Phys. Scr. 50, 265 (1994).
[Crossref]

Barthelemy, A.

L. Lefort and A. Barthelemy, IEEE Photon. Technol. Lett. 9, 1364 (1997).
[Crossref]

Chi, S.

Chilwell, J. T.

C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and S. D. Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).
[Crossref]

Crosignani, B.

Diporto, P.

Finlayson, N.

J. P. Sabini, N. Finlayson, and G. I. Stegeman, Appl. Phys. Lett. 55, 1176 (1989).
[Crossref]

Hasegawa, A.

A. Hasegawa, Optical Solitons in Fibers, 2nd ed. (Springer-Verlag, Berlin, 1990).
[Crossref]

Heatley, D. R.

Höök, A.

M. Karlsson, D. Anderson, A. Höök, and M. Lisak, Phys. Scr. 50, 265 (1994).
[Crossref]

Kaplan, A. E.

A. E. Kaplan, JETP Lett. 24, 114 (1976).

Karlsson, M.

M. Karlsson, D. Anderson, A. Höök, and M. Lisak, Phys. Scr. 50, 265 (1994).
[Crossref]

Lefort, L.

L. Lefort and A. Barthelemy, IEEE Photon. Technol. Lett. 9, 1364 (1997).
[Crossref]

Lisak, M.

M. Karlsson, D. Anderson, A. Höök, and M. Lisak, Phys. Scr. 50, 265 (1994).
[Crossref]

Moloney, J. V.

Newell, A. C.

Sabini, J. P.

J. P. Sabini, N. Finlayson, and G. I. Stegeman, Appl. Phys. Lett. 55, 1176 (1989).
[Crossref]

Salamo, G.

Seaton, C. T.

C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and S. D. Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).
[Crossref]

Segev, M.

Shi, T. T.

Shih, M.

Shoemaker, R. L.

C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and S. D. Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).
[Crossref]

Smith, S. D.

C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and S. D. Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).
[Crossref]

Stegeman, G. I.

J. P. Sabini, N. Finlayson, and G. I. Stegeman, Appl. Phys. Lett. 55, 1176 (1989).
[Crossref]

C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and S. D. Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).
[Crossref]

Stegman, G. I.

Valera, J. D.

C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and S. D. Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).
[Crossref]

Valley, G. C.

Varatharajah, P.

Wright, E. M.

Appl. Phys. Lett. (1)

J. P. Sabini, N. Finlayson, and G. I. Stegeman, Appl. Phys. Lett. 55, 1176 (1989).
[Crossref]

IEEE J. Quantum Electron. (1)

C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and S. D. Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Lefort and A. Barthelemy, IEEE Photon. Technol. Lett. 9, 1364 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

A. E. Kaplan, JETP Lett. 24, 114 (1976).

Opt. Lett. (2)

Phys. Scr. (1)

M. Karlsson, D. Anderson, A. Höök, and M. Lisak, Phys. Scr. 50, 265 (1994).
[Crossref]

Other (2)

A. Hasegawa, Optical Solitons in Fibers, 2nd ed. (Springer-Verlag, Berlin, 1990).
[Crossref]

T. K. Gustafson and P. W. Smith, eds., Photonic Switching (Springer-Verlag, Berlin, 1988).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Interaction of an incoherent equal-amplitude soliton pair with a nonlinear interface: a, large intersoliton initial distance; b, smaller intersoliton initial distance. I, beam propagation method results; II, particlelike model.

Fig. 2
Fig. 2

Equivalent potential encountered by the signal soliton in the presence of the control soliton and without it.

Fig. 3
Fig. 3

Beam propagation method simulation of the double-soliton switch: a, low-power soliton; b, high-power soliton; I, isolated interaction of each soliton with the interface; II, interaction of both solitons together. The dashed curves represent the trajectories of the other soliton.

Fig. 4
Fig. 4

Beam propagation method simulation of coherent solitons interaction: a, different amplitudes (compare with Fig. 3); b, equal amplitudes (compare with Fig. 1).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2iβk0Ez,xz+2Ez,xx2-k02β2-n0j2+2n0jEz,x2Ez,x=0,
iAz+2Ax2+2AA2=WA,
W=n012-n022-2n02n22n01n21-1A2medium 10medium 2.
iAz+2Ax2+2AA2=WA-2B2A,iBz+2Bx2+2BB2=WB-2A2B,
2x¯Az2=-2PA-xWA-2B2A2dx,2x¯Bz2=-2PB-xWB-2A2B2dx,
FEA=64η32ηx¯B-x¯A2 cosh22ηx¯B-x¯A+1sinh42ηx¯B-x¯A-3 cosh2ηx¯B-x¯Asinh32ηx¯B-x¯A.
V˜=-64η2sinh32ηx¯2η cosh2ηx¯x¯-sinh2ηx¯,
FDA=4ηB3cosh42ηBx¯24 sinh4ηBx¯+π4 sinh32ηBx¯-20 sinhηBx¯-32ηBx¯2 cosh22ηBx¯-3,

Metrics