Abstract

In profilometric measurements, by scanning the sample twice with a fixed vertical offset, one can separate the signal that comes from surface heterogeneity from the topographic signal. Using differential confocal microscopy, a newly developed open-loop nanometer profilometric technique, we demonstrated this dual-scan method on composite samples and obtained 10-nm depth resolution. This technique can also be applied to other profilometric techniques such as atomic force microscopy and scanning tunneling microscopy.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Radmacher, R. W. Tillmann, M. Fritz, and H. E. Gaub, Science 257, 1900 (1992).
    [CrossRef] [PubMed]
  2. C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University, New York, 1993), Chap. 1.
  3. C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
    [CrossRef]
  4. Using the Video Scan Head (General Scanning, Watertown, Mass.) together with flat-field objectives (e.g., Nikon CF Plan Achromat NC; Nikon, Tokyo), we built a differential confocal microscope with a 22-Hz frame rate at 256×256 pixels.
  5. C.-H. Lee, C.-L. Guo, and J. Wang, Opt. Lett. 23, 307 (1998).
    [CrossRef]
  6. G. W. Johnson, D. C. Leiner, and D. T. Moore, Proc. SPIE 126, 152 (1977).
    [CrossRef]
  7. N. A. Massie, R. D. Nelson, and S. Holly, Appl. Opt. 18, 1797 (1979).
    [CrossRef] [PubMed]
  8. K. Creath, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, The Netherlands, 1988), Vol. XXVI, Chap. 5.
  9. J. M. Guerra, Appl. Opt. 29, 3741 (1990).
    [CrossRef] [PubMed]
  10. T. Wilson, in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), Chap. 1.
  11. N. A. Burnham and R. J. Colton, in Scanning Tunneling Microscopy and Spectroscopy, D. A. Bonnell, ed. (VCH, New York, 1993), Chap. 7.
  12. R. J. Hamers, in Scanning Tunneling Microscopy and Spectroscopy, D. A. Bonnell, ed. (VCH, New York, 1993), Chap. 4.

1998

1997

C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
[CrossRef]

1992

M. Radmacher, R. W. Tillmann, M. Fritz, and H. E. Gaub, Science 257, 1900 (1992).
[CrossRef] [PubMed]

1990

1979

1977

G. W. Johnson, D. C. Leiner, and D. T. Moore, Proc. SPIE 126, 152 (1977).
[CrossRef]

Burnham, N. A.

N. A. Burnham and R. J. Colton, in Scanning Tunneling Microscopy and Spectroscopy, D. A. Bonnell, ed. (VCH, New York, 1993), Chap. 7.

Chen, C. J.

C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University, New York, 1993), Chap. 1.

Colton, R. J.

N. A. Burnham and R. J. Colton, in Scanning Tunneling Microscopy and Spectroscopy, D. A. Bonnell, ed. (VCH, New York, 1993), Chap. 7.

Creath, K.

K. Creath, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, The Netherlands, 1988), Vol. XXVI, Chap. 5.

Fritz, M.

M. Radmacher, R. W. Tillmann, M. Fritz, and H. E. Gaub, Science 257, 1900 (1992).
[CrossRef] [PubMed]

Gaub, H. E.

M. Radmacher, R. W. Tillmann, M. Fritz, and H. E. Gaub, Science 257, 1900 (1992).
[CrossRef] [PubMed]

Guerra, J. M.

Guo, C.-L.

Hamers, R. J.

R. J. Hamers, in Scanning Tunneling Microscopy and Spectroscopy, D. A. Bonnell, ed. (VCH, New York, 1993), Chap. 4.

Holly, S.

Johnson, G. W.

G. W. Johnson, D. C. Leiner, and D. T. Moore, Proc. SPIE 126, 152 (1977).
[CrossRef]

Lee, C.-H.

C.-H. Lee, C.-L. Guo, and J. Wang, Opt. Lett. 23, 307 (1998).
[CrossRef]

C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
[CrossRef]

Leiner, D. C.

G. W. Johnson, D. C. Leiner, and D. T. Moore, Proc. SPIE 126, 152 (1977).
[CrossRef]

Massie, N. A.

Moore, D. T.

G. W. Johnson, D. C. Leiner, and D. T. Moore, Proc. SPIE 126, 152 (1977).
[CrossRef]

Nelson, R. D.

Radmacher, M.

M. Radmacher, R. W. Tillmann, M. Fritz, and H. E. Gaub, Science 257, 1900 (1992).
[CrossRef] [PubMed]

Tillmann, R. W.

M. Radmacher, R. W. Tillmann, M. Fritz, and H. E. Gaub, Science 257, 1900 (1992).
[CrossRef] [PubMed]

Wang, J.

C.-H. Lee, C.-L. Guo, and J. Wang, Opt. Lett. 23, 307 (1998).
[CrossRef]

C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
[CrossRef]

Wilson, T.

T. Wilson, in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), Chap. 1.

Appl. Opt.

Opt. Commun.

C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
[CrossRef]

Opt. Lett.

Proc. SPIE

G. W. Johnson, D. C. Leiner, and D. T. Moore, Proc. SPIE 126, 152 (1977).
[CrossRef]

Science

M. Radmacher, R. W. Tillmann, M. Fritz, and H. E. Gaub, Science 257, 1900 (1992).
[CrossRef] [PubMed]

Other

C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University, New York, 1993), Chap. 1.

Using the Video Scan Head (General Scanning, Watertown, Mass.) together with flat-field objectives (e.g., Nikon CF Plan Achromat NC; Nikon, Tokyo), we built a differential confocal microscope with a 22-Hz frame rate at 256×256 pixels.

K. Creath, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, The Netherlands, 1988), Vol. XXVI, Chap. 5.

T. Wilson, in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), Chap. 1.

N. A. Burnham and R. J. Colton, in Scanning Tunneling Microscopy and Spectroscopy, D. A. Bonnell, ed. (VCH, New York, 1993), Chap. 7.

R. J. Hamers, in Scanning Tunneling Microscopy and Spectroscopy, D. A. Bonnell, ed. (VCH, New York, 1993), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup:  λ/4plate, quarter-wave plate; A/D, analog–digital.

Fig. 2
Fig. 2

(a) Single-crystalline Si implanted with Ga+. (b) Single-scan data. (c) Same region as in (b) after a dual scan.

Fig. 3
Fig. 3

Surface profile of a polystyrene sphere. Dashed–dotted curve, single-scan data; dashed curve, dual-scan corrected data; solid curve, a sphere of 12.3µm radius.

Fig. 4
Fig. 4

Profile of a strip of Al coated on fused silica. Inset: image of the Al strip under an ordinary optical microscope. Solid curve, profile measured by AFM; crosses, data obtained by dual-scan DCM.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ix,y,z=Ax,yFgzx,y,
zx,y-z0=I1x,y-Ax,yFgz0gAx,yFgz0=ax,yI1x,y+b,
zx,y+Δz-z0=ax,yI2x,y+b.

Metrics