Abstract

The question of whether a unique distribution of the absorption coefficient, the scattering coefficient, and the refractive index of a turbid medium can be reconstructed by optical tomography is considered. A recent publication [Opt. Lett. 23, 882 (1998)] established that such reconstruction is not possible when photon transport is well modeled by the diffusion equation. A simple proof is offered that, when measurements at high modulation frequencies are included, the more exact P1 model of light transport suggests that this reconstruction may be possible.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, Proc. SPIE 1431, 204 (1991).
    [CrossRef]
  2. E. B. de Haller, J. Biomed. Opt. 1, 7 (1996).
    [CrossRef] [PubMed]
  3. S. R. Arridge and W. R. B. Lionheart, Opt. Lett. 23, 882 (1998).
    [CrossRef]
  4. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, J. Opt. Soc. Am. A 11, 2727 (1994).
    [CrossRef]
  5. D. J. Durian, Opt. Lett. 23, 1502 (1998).
    [CrossRef]
  6. G. I. Bell and S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold, New York, 1970), pp. 1–15.
  7. W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum. Electron. 26, 2166 (1990).
    [CrossRef]

1998 (2)

1996 (1)

E. B. de Haller, J. Biomed. Opt. 1, 7 (1996).
[CrossRef] [PubMed]

1994 (1)

1991 (1)

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, Proc. SPIE 1431, 204 (1991).
[CrossRef]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum. Electron. 26, 2166 (1990).
[CrossRef]

Arridge, S. R.

S. R. Arridge and W. R. B. Lionheart, Opt. Lett. 23, 882 (1998).
[CrossRef]

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, Proc. SPIE 1431, 204 (1991).
[CrossRef]

Bell, G. I.

G. I. Bell and S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold, New York, 1970), pp. 1–15.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum. Electron. 26, 2166 (1990).
[CrossRef]

Cope, M.

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, Proc. SPIE 1431, 204 (1991).
[CrossRef]

de Haller, E. B.

E. B. de Haller, J. Biomed. Opt. 1, 7 (1996).
[CrossRef] [PubMed]

Delpy, D. T.

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, Proc. SPIE 1431, 204 (1991).
[CrossRef]

Durian, D. J.

Feng, T. C.

Glasstone, S.

G. I. Bell and S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold, New York, 1970), pp. 1–15.

Haskell, R. C.

Lionheart, W. R. B.

McAdams, M. S.

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum. Electron. 26, 2166 (1990).
[CrossRef]

Svaasand, L. O.

Tromberg, B. J.

Tsay, T. T.

van der Zee, P.

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, Proc. SPIE 1431, 204 (1991).
[CrossRef]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum. Electron. 26, 2166 (1990).
[CrossRef]

IEEE J. Quantum. Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, IEEE J. Quantum. Electron. 26, 2166 (1990).
[CrossRef]

J. Biomed. Opt. (1)

E. B. de Haller, J. Biomed. Opt. 1, 7 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Proc. SPIE (1)

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, Proc. SPIE 1431, 204 (1991).
[CrossRef]

Other (1)

G. I. Bell and S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold, New York, 1970), pp. 1–15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (17)

Equations on this page are rendered with MathJax. Learn more.

-·κϕ˜r,ω+μa+nciωϕ˜r,ω=q˜0ω,
-2ψ˜ω+2γγ+μaγ2+ncγ2iωψ˜ω=q˜0ωγ,
-κ2Φr,t+μa+n1+3κμact+3n2κc22t2Φr,t=1+3nκctq0r,t.
ϕr,tt+·Jr,t=-μacnϕr,t+qr,t,
Nr,Ω,t=14πϕr,t+34πncJr,tΩ,
ncJr,tt=-13cnϕr,t-13κJr,t,
iωϕ˜r,ω+·J˜r,ω=-μacnϕ˜r,ω+q˜r,ω,
J˜r,ω13κ+iωnc=-3cnϕ˜r,ω,
-·3iωnc+1κ-1ϕ˜r,ωn+μan+iωcϕ˜r,ω=q˜r,ωc.
-2ζ˜+2αα+μak-3n2ω2c2+iωnc1κ+3μaζ˜=q˜α.
ωcnμa3γ2,
nn=γ2γ2, μa=γ22γγ-2γγ+μaγ2.
Re2αα+μak-3n2ω2c2=ditto,Im2αα+iωnc1k+3μa=ditto,
α=κ1/2, =1+3iωnκc-1/2
2κ1/2κ1/2+2κ1/2κ1/23ω2c2nκnκ+3ω2c2nκ2nκ+μaκ-3n2ω2c2=ditto,-2κ1/2κ1/23ω2cnκ-3ω2c2nκ+ωκnκ=ditto.
2κ1/2κ1/2nκκκ2nκ1-κκ2+2nκκκ2nκ1-κκ2-4n21-κκ2=0,2κ1/2κ1/2nκnκ1-κκ2+2nκnκ1-κκ2-4n21-κκ2=0.
2κ1/2κ1/2nκ+2nκ-4nκ=0,

Metrics