Abstract

We tackle the theory of linearly birefringent single-mode dielectric fibers in terms of magnetic fields, instead of the usual electric fields. The new approach simplifies the analysis of the minor field component as a function of the radial coordinate. Several previous results are reconfirmed and unified. New closed-form expressions are found for the field in a fiber in which the physical index seen by the minor component matches, in a part of the cross section, the guided-mode equivalent index.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lu and M. M. Fejer, J. Opt. Soc. Am. A 10, 246 (1993).
    [CrossRef]
  2. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  3. C. Vassallo, J. Lightwave Technol. LT-5, 24 (1987).
    [CrossRef]
  4. M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
    [CrossRef]
  5. M. Dal Molin, A. Galtarossa, and C. G. Someda, Appl. Opt. 36, 2526 (1997).
    [CrossRef]
  6. A. Galtarossa and M. Porporati, Opt. Quantum Electron. 31, 53 (1999).
    [CrossRef]
  7. A. Galtarossa and C. G. Someda, J. Lightwave Technol. LT-3, 1332 (1985).
    [CrossRef]

1999

A. Galtarossa and M. Porporati, Opt. Quantum Electron. 31, 53 (1999).
[CrossRef]

1997

1993

1987

C. Vassallo, J. Lightwave Technol. LT-5, 24 (1987).
[CrossRef]

1985

A. Galtarossa and C. G. Someda, J. Lightwave Technol. LT-3, 1332 (1985).
[CrossRef]

1984

M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
[CrossRef]

1971

Dal Molin, M.

Fejer, M. M.

Galtarossa, A.

A. Galtarossa and M. Porporati, Opt. Quantum Electron. 31, 53 (1999).
[CrossRef]

M. Dal Molin, A. Galtarossa, and C. G. Someda, Appl. Opt. 36, 2526 (1997).
[CrossRef]

A. Galtarossa and C. G. Someda, J. Lightwave Technol. LT-3, 1332 (1985).
[CrossRef]

Gloge, D.

Love, J. D.

M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
[CrossRef]

Lu, M.

Payne, D. N.

M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
[CrossRef]

Porporati, M.

A. Galtarossa and M. Porporati, Opt. Quantum Electron. 31, 53 (1999).
[CrossRef]

Someda, C. G.

M. Dal Molin, A. Galtarossa, and C. G. Someda, Appl. Opt. 36, 2526 (1997).
[CrossRef]

A. Galtarossa and C. G. Someda, J. Lightwave Technol. LT-3, 1332 (1985).
[CrossRef]

Varnham, M. P.

M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
[CrossRef]

Vassallo, C.

C. Vassallo, J. Lightwave Technol. LT-5, 24 (1987).
[CrossRef]

Appl. Opt.

Electron. Lett.

M. P. Varnham, D. N. Payne, and J. D. Love, Electron. Lett. 20, 55 (1984).
[CrossRef]

J. Lightwave Technol.

C. Vassallo, J. Lightwave Technol. LT-5, 24 (1987).
[CrossRef]

A. Galtarossa and C. G. Someda, J. Lightwave Technol. LT-3, 1332 (1985).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Quantum Electron.

A. Galtarossa and M. Porporati, Opt. Quantum Electron. 31, 53 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Examples of index profiles in which one of the physical indices equals (in a part of the fiber) the effective index of the guided mode.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

t2Ht-β2Ht=-jωRt,
Rt=jβt·Et×aˆz+tzEz×aˆz,
jωμ0Ht=×EtjβEt×aˆz.
t2Ht+k02n02-β2Ht=ωβt-0n02I·Et×aˆz,
t2Hx+k02nx2-β2Hx=-2βk0nyBHx,
t2Hy+k02nx2-β2Hy=0,
δβk0ny-nx.
δu-βi/uxδβ=-k0β/uxny-nx.
R+R/r-4R/r2=0,
R=ar2+A/r2,

Metrics