Abstract

Using electronic phase detection, we study the dynamics that govern pulse retiming in an actively mode-locked fiber laser. We compare the dynamics for amplitude and for phase modulation and identify the characteristic time constants for each case. The retiming dynamics for amplitude modulation are revealed as a first-order exponential decay, whereas for phase modulation the dynamics are those of a damped harmonic oscillator. We show that the measured time constants agree with predictions given by the soliton perturbation theory.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
    [CrossRef]
  2. J. A. Bell, M. C. Hamilton, D. A. Leep, H. F. Taylor, and Y. H. Lee, Proc. SPIE 1476, 326 (1991).
    [CrossRef]
  3. H. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
    [CrossRef]
  4. M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Timing jitter in an actively mode-locked soliton fiber laser:?comparison between amplitude and phase modulation,” to be submitted to J. Opt. Soc. Am. B.
  5. M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
    [CrossRef]
  6. M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
    [CrossRef]

1997

M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
[CrossRef]

1996

M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

1993

H. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

1991

J. A. Bell, M. C. Hamilton, D. A. Leep, H. F. Taylor, and Y. H. Lee, Proc. SPIE 1476, 326 (1991).
[CrossRef]

1989

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

Bell, J. A.

J. A. Bell, M. C. Hamilton, D. A. Leep, H. F. Taylor, and Y. H. Lee, Proc. SPIE 1476, 326 (1991).
[CrossRef]

Bloom, D. M.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

Chen, Y.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Timing jitter in an actively mode-locked soliton fiber laser:?comparison between amplitude and phase modulation,” to be submitted to J. Opt. Soc. Am. B.

Esman, R. D.

M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
[CrossRef]

Grein, M. E.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Timing jitter in an actively mode-locked soliton fiber laser:?comparison between amplitude and phase modulation,” to be submitted to J. Opt. Soc. Am. B.

Hamilton, M. C.

J. A. Bell, M. C. Hamilton, D. A. Leep, H. F. Taylor, and Y. H. Lee, Proc. SPIE 1476, 326 (1991).
[CrossRef]

Haus, H.

H. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Haus, H. A.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Timing jitter in an actively mode-locked soliton fiber laser:?comparison between amplitude and phase modulation,” to be submitted to J. Opt. Soc. Am. B.

Ippen, E. P.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Timing jitter in an actively mode-locked soliton fiber laser:?comparison between amplitude and phase modulation,” to be submitted to J. Opt. Soc. Am. B.

Kang, J. U.

M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
[CrossRef]

Lee, Y. H.

J. A. Bell, M. C. Hamilton, D. A. Leep, H. F. Taylor, and Y. H. Lee, Proc. SPIE 1476, 326 (1991).
[CrossRef]

Leep, D. A.

J. A. Bell, M. C. Hamilton, D. A. Leep, H. F. Taylor, and Y. H. Lee, Proc. SPIE 1476, 326 (1991).
[CrossRef]

Mecozzi, A.

H. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Nakazawa, M.

M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

Rodwell, M. J. W.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

Tamura, K.

M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

Taylor, H. F.

J. A. Bell, M. C. Hamilton, D. A. Leep, H. F. Taylor, and Y. H. Lee, Proc. SPIE 1476, 326 (1991).
[CrossRef]

Weingarten, K. J.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

Yoshida, E.

M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

Electron. Lett.

M. Y. Frankel, J. U. Kang, and R. D. Esman, Electron. Lett. 33, 2096 (1997).
[CrossRef]

M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

IEEE J. Quantum Electron.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

H. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Proc. SPIE

J. A. Bell, M. C. Hamilton, D. A. Leep, H. F. Taylor, and Y. H. Lee, Proc. SPIE 1476, 326 (1991).
[CrossRef]

Other

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Timing jitter in an actively mode-locked soliton fiber laser:?comparison between amplitude and phase modulation,” to be submitted to J. Opt. Soc. Am. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Retiming dynamics for AM. Solid curves, data; dashed curves, fits to a first-order exponential decay.

Fig. 3
Fig. 3

Characteristic recovery time for AM plotted as a function of the product of modulation depth and pulse width squared. Dashed curve, the calculated value; squares, data. The error bars apply to all data points.

Fig. 4
Fig. 4

Retiming dynamics for PM. Solid curves, data; dashed and dashed–dotted curves, fits to a damped harmonic oscillator with two fitting parameters.

Fig. 5
Fig. 5

Filtering time constant as a function of pulse width. Dashed curve, the calculated value; squares, data.

Fig. 6
Fig. 6

Oscillatory time constant as a function of modulation depth. Dashed curve, the calculated value; squares, data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

TΔT+1τAMΔT=STT,
2T2ΔT+T1τpΔT+ΩPMΔT=TSTT+1τpSTT,

Metrics