Abstract

A theoretical investigation of oblique plane-wave electromagnetic scattering in an active dielectric cylinder predicted the existence of anomalous resonances at discrete plane-wave angles of incidence. These resonances may be understood as being due to a leaky-wave phase-matching boundary condition. Experiments were performed with active dielectric cylinders to confirm the existence of discrete resonances. Cross coupling between TE and TM modes was clearly detected for both active and passive scattering. Enhancement of active scattered field intensities was observed in experiments with finite-diameter pump and probe laser beams. Optical pumping of a dye solution was used to provide the gain.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. G. Alexopoulos and N. K. Uzunoglu, Appl. Opt. 17, 235 (1978).
    [CrossRef] [PubMed]
  2. M. Kerker, Appl. Opt. 17, 3337 (1978).
    [CrossRef] [PubMed]
  3. M. Kerker, Appl. Opt. 18, 1180 (1979).
    [CrossRef] [PubMed]
  4. N. Periasamy and F. P. Schafer, Appl. Phys. 24, 201 (1981).
  5. S. N. Mendenhall, O. M. Stafsudd, and N. G. Alexopoulos, J. Appl. Phys. 66, 4645 (1989).
    [CrossRef]
  6. S. N. Mendenhall, O. M. Stafsudd, and N. G. Alexopoulos, Opt. Lett. 14, 1234 (1989).
    [CrossRef] [PubMed]
  7. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  8. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1985).

1989 (2)

S. N. Mendenhall, O. M. Stafsudd, and N. G. Alexopoulos, J. Appl. Phys. 66, 4645 (1989).
[CrossRef]

S. N. Mendenhall, O. M. Stafsudd, and N. G. Alexopoulos, Opt. Lett. 14, 1234 (1989).
[CrossRef] [PubMed]

1981 (1)

N. Periasamy and F. P. Schafer, Appl. Phys. 24, 201 (1981).

1979 (1)

1978 (2)

Alexopoulos, N. G.

Kerker, M.

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1985).

Mendenhall, S. N.

S. N. Mendenhall, O. M. Stafsudd, and N. G. Alexopoulos, Opt. Lett. 14, 1234 (1989).
[CrossRef] [PubMed]

S. N. Mendenhall, O. M. Stafsudd, and N. G. Alexopoulos, J. Appl. Phys. 66, 4645 (1989).
[CrossRef]

Periasamy, N.

N. Periasamy and F. P. Schafer, Appl. Phys. 24, 201 (1981).

Schafer, F. P.

N. Periasamy and F. P. Schafer, Appl. Phys. 24, 201 (1981).

Stafsudd, O. M.

S. N. Mendenhall, O. M. Stafsudd, and N. G. Alexopoulos, J. Appl. Phys. 66, 4645 (1989).
[CrossRef]

S. N. Mendenhall, O. M. Stafsudd, and N. G. Alexopoulos, Opt. Lett. 14, 1234 (1989).
[CrossRef] [PubMed]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Uzunoglu, N. K.

Appl. Opt. (3)

Appl. Phys. (1)

N. Periasamy and F. P. Schafer, Appl. Phys. 24, 201 (1981).

J. Appl. Phys. (1)

S. N. Mendenhall, O. M. Stafsudd, and N. G. Alexopoulos, J. Appl. Phys. 66, 4645 (1989).
[CrossRef]

Opt. Lett. (1)

Other (2)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of oblique plane-wave scattering geometry. n1 and n2 are the indices of refraction at each region.

Fig. 2
Fig. 2

Cross sectional view of a leaky waveguide mode in a dielectric cylindrical waveguiding structure.

Fig. 3
Fig. 3

Electric-field intensity for the first TE mode as a function of scattering angle α for a cylindrical dielectric waveguiding structure. Resonant scattering is produced near the critical angle at α0.4947 for n2=1.33-j×10-4, n1=1.515, and d=25 µm.

Fig. 4
Fig. 4

Active and passive scattered intensities (TM polarization) verses angle of rotation near the critical angle with a TE-polarized incident probe for a 25µm-diameter cylinder.

Fig. 5
Fig. 5

Comparison of the TM-polarized active scattered intensity as a function of rotation angle near the critical angle with the TE-polarized incident probe for several pumping levels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1-R21 expgqd/cos θ2q=0,
22πn2rλ0cos θ2qd2πq,  q=1,2,3,,
αq=arccosn2r sin θ2q/n1.

Metrics