Abstract

Static interference fringes were observed repeatedly with changes of path difference in both homodyne and heterodyne Michelson interferometers. This unique coherence property of an electronically tuned Ti:sapphire laser with an intracavity acousto-optic tunable filter (AOTF) has revealed the frequency structure and dynamics of the laser field. The fact that static interference occurred in a heterodyne interferometer with unequal path lengths indicates backscattering of the intracavity laser field, suggesting that Brillouin-enhanced four-wave mixing occurs in the intracavity AOTF.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dandliker, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1980), Vol. XVII, p. 3–84.
  2. J. Geng, S. Wada, Y. Urata, and H. Tashiro, Opt. Lett. 24, 676 (1999).
    [CrossRef]
  3. F. V. Kowalski, P. D. Hale, and S. J. Shattil, Opt. Lett. 13, 622 (1988).
    [CrossRef]
  4. F. V. Kowalski, K. Nakamura, and H. Ito, Opt. Commun. 147, 103 (1998).
    [CrossRef]
  5. I. C. M. Littler, S. Balle, and K. Bergmann, J. Opt. Soc. Am. B 8, 1412 (1990).
    [CrossRef]
  6. M. W. Bowers and R. W. Boyd, IEEE J. Quantum Electron. 34, 634 (1998).
    [CrossRef]
  7. I. Reinhard, M. Gabrysch, B. F. Weikersthal, K. Jungmann, and G. Putlitz, Appl. Phys. B 63, 467 (1996).
    [CrossRef]

1999 (1)

1998 (2)

F. V. Kowalski, K. Nakamura, and H. Ito, Opt. Commun. 147, 103 (1998).
[CrossRef]

M. W. Bowers and R. W. Boyd, IEEE J. Quantum Electron. 34, 634 (1998).
[CrossRef]

1996 (1)

I. Reinhard, M. Gabrysch, B. F. Weikersthal, K. Jungmann, and G. Putlitz, Appl. Phys. B 63, 467 (1996).
[CrossRef]

1990 (1)

1988 (1)

Balle, S.

Bergmann, K.

Bowers, M. W.

M. W. Bowers and R. W. Boyd, IEEE J. Quantum Electron. 34, 634 (1998).
[CrossRef]

Boyd, R. W.

M. W. Bowers and R. W. Boyd, IEEE J. Quantum Electron. 34, 634 (1998).
[CrossRef]

Dandliker, R.

R. Dandliker, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1980), Vol. XVII, p. 3–84.

Gabrysch, M.

I. Reinhard, M. Gabrysch, B. F. Weikersthal, K. Jungmann, and G. Putlitz, Appl. Phys. B 63, 467 (1996).
[CrossRef]

Geng, J.

Hale, P. D.

Ito, H.

F. V. Kowalski, K. Nakamura, and H. Ito, Opt. Commun. 147, 103 (1998).
[CrossRef]

Jungmann, K.

I. Reinhard, M. Gabrysch, B. F. Weikersthal, K. Jungmann, and G. Putlitz, Appl. Phys. B 63, 467 (1996).
[CrossRef]

Kowalski, F. V.

F. V. Kowalski, K. Nakamura, and H. Ito, Opt. Commun. 147, 103 (1998).
[CrossRef]

F. V. Kowalski, P. D. Hale, and S. J. Shattil, Opt. Lett. 13, 622 (1988).
[CrossRef]

Littler, I. C. M.

Nakamura, K.

F. V. Kowalski, K. Nakamura, and H. Ito, Opt. Commun. 147, 103 (1998).
[CrossRef]

Putlitz, G.

I. Reinhard, M. Gabrysch, B. F. Weikersthal, K. Jungmann, and G. Putlitz, Appl. Phys. B 63, 467 (1996).
[CrossRef]

Reinhard, I.

I. Reinhard, M. Gabrysch, B. F. Weikersthal, K. Jungmann, and G. Putlitz, Appl. Phys. B 63, 467 (1996).
[CrossRef]

Shattil, S. J.

Tashiro, H.

Urata, Y.

Wada, S.

Weikersthal, B. F.

I. Reinhard, M. Gabrysch, B. F. Weikersthal, K. Jungmann, and G. Putlitz, Appl. Phys. B 63, 467 (1996).
[CrossRef]

Appl. Phys. B (1)

I. Reinhard, M. Gabrysch, B. F. Weikersthal, K. Jungmann, and G. Putlitz, Appl. Phys. B 63, 467 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. W. Bowers and R. W. Boyd, IEEE J. Quantum Electron. 34, 634 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

F. V. Kowalski, K. Nakamura, and H. Ito, Opt. Commun. 147, 103 (1998).
[CrossRef]

Opt. Lett. (2)

Other (1)

R. Dandliker, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1980), Vol. XVII, p. 3–84.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic layout of the experimental apparatus: (a) electronically tuned Ti:sapphire laser with AOTF1, (b) homodyne interferometer, (c) heterodyne interferometer with AOTF2. M1, M2, mirrors; PC, computer.

Fig. 2
Fig. 2

Fringe visibility versus fAOTF1 observed in the homodyne interferometer. The cavity length of the laser, Lc, was fixed at 58 cm. Phase locking was enhanced when 2fAOTF1=c/2Lc.

Fig. 3
Fig. 3

Static fringes were periodically observed for the laser with an arbitrary fAOTF1 in the heterodyne interfero-meter. Solid and dashed lines show the fringe visibilities for the laser with resonant and detuning cavity lengths, respectively.

Fig. 4
Fig. 4

Model for beam propagation in the Ti:sapphire laser with the AOTF. The residual standing acoustic waves (incident wave k and its reflecting wave -k) in the AOTF lead to the feedback beam consisting of both frequency-shifted ω±2f and unshifted ω components. A minus or a plus here means that the frequency is downshifted twice by wave k or by wave -k, respectively. The unshifted frequency ω results from canceling of the downshift once by wave k and once by wave -k. The beam could be backscattered by the AOTF by the BEFWM process (upper inset): ω4=ω2+ω3-ω1, where ω1=ω, ω2=ω3=ω±f, and ω4=ω±2f or ω1=ω, ω2=ω+f, ω3=ω-f, and ω4=ω. The nonlinear interaction in the active media leads to continuous frequency chirping and broadening. Lower inset, superposition of a set of undistinguished frequency groups.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔL1=nc/2fAOTF1,  n=0,±1,±2,,
ΔL2=±2L0+nc/2fAOTF1,  n=0,±1,±2,

Metrics