Abstract

An ultracompact, actively Q-switched optical parametric oscillator (OPO) has been realized that is only 30 mm in length, based on a semimonolithic microchip laser, a quadrupole deflector, and a monolithic periodically poled lithium niobate crystal. The OPO threshold was 550 mW when Nd:YAG was used as the gain material and 590 mW for Nd:YVO4, giving signal pulses of as much as 8.7 µJ in energy with Nd:YAG at 1 kHz and 5.9µJ pulses with Nd:YVO4 at 5 kHz, for 1.2- and 2-W laser diode pumping, respectively. The output was single frequency and could be tuned over the range 1540–3440 nm.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription