Abstract

An ultracompact, actively Q-switched optical parametric oscillator (OPO) has been realized that is only 30 mm in length, based on a semimonolithic microchip laser, a quadrupole deflector, and a monolithic periodically poled lithium niobate crystal. The OPO threshold was 550 mW when Nd:YAG was used as the gain material and 590 mW for Nd:YVO4, giving signal pulses of as much as 8.7 µJ in energy with Nd:YAG at 1 kHz and 5.9µJ pulses with Nd:YVO4 at 5 kHz, for 1.2- and 2-W laser diode pumping, respectively. The output was single frequency and could be tuned over the range 1540–3440 nm.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Gibson, R. S. Conroy, A. J. Kemp, B. D. Sinclair, M. J. Padgett, and M. H. Dunn, Opt. Lett. 23, 517 (1998).
    [CrossRef]
  2. D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, Opt. Lett. 23, 1897 (1998).
    [CrossRef]
  3. J. J. Zayhowski, IEEE Photon. Technol. Lett. 9, 925 (1997).
    [CrossRef]
  4. U. Bader, J. Bartschke, I. Klimov, A. Borsutzky, and R. Wallenstein, Opt. Commun. 147, 95 (1998).
    [CrossRef]
  5. R. S. Conroy, C. F. Rae, G. J. Friel, M. H. Dunn, B. D. Sinclair, and J. M. Ley, Opt. Lett. 23, 1348 (1998).
    [CrossRef]
  6. G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, Appl. Phys. B 67, 267 (1998).
    [CrossRef]
  7. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]
  8. G. J. Edwards and M. Lawerence, Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]

1998 (5)

D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, Opt. Lett. 23, 1897 (1998).
[CrossRef]

U. Bader, J. Bartschke, I. Klimov, A. Borsutzky, and R. Wallenstein, Opt. Commun. 147, 95 (1998).
[CrossRef]

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, Appl. Phys. B 67, 267 (1998).
[CrossRef]

G. M. Gibson, R. S. Conroy, A. J. Kemp, B. D. Sinclair, M. J. Padgett, and M. H. Dunn, Opt. Lett. 23, 517 (1998).
[CrossRef]

R. S. Conroy, C. F. Rae, G. J. Friel, M. H. Dunn, B. D. Sinclair, and J. M. Ley, Opt. Lett. 23, 1348 (1998).
[CrossRef]

1997 (2)

D. H. Jundt, Opt. Lett. 22, 1553 (1997).
[CrossRef]

J. J. Zayhowski, IEEE Photon. Technol. Lett. 9, 925 (1997).
[CrossRef]

1984 (1)

G. J. Edwards and M. Lawerence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Bader, U.

U. Bader, J. Bartschke, I. Klimov, A. Borsutzky, and R. Wallenstein, Opt. Commun. 147, 95 (1998).
[CrossRef]

Bartschke, J.

U. Bader, J. Bartschke, I. Klimov, A. Borsutzky, and R. Wallenstein, Opt. Commun. 147, 95 (1998).
[CrossRef]

Borsutzky, A.

U. Bader, J. Bartschke, I. Klimov, A. Borsutzky, and R. Wallenstein, Opt. Commun. 147, 95 (1998).
[CrossRef]

Conroy, R. S.

Dunn, M. H.

Ebrahimzadeh, M.

D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, Opt. Lett. 23, 1897 (1998).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawerence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Friel, G. J.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, Appl. Phys. B 67, 267 (1998).
[CrossRef]

R. S. Conroy, C. F. Rae, G. J. Friel, M. H. Dunn, B. D. Sinclair, and J. M. Ley, Opt. Lett. 23, 1348 (1998).
[CrossRef]

Gibson, G. M.

Jundt, D. H.

Kemp, A. J.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, Appl. Phys. B 67, 267 (1998).
[CrossRef]

G. M. Gibson, R. S. Conroy, A. J. Kemp, B. D. Sinclair, M. J. Padgett, and M. H. Dunn, Opt. Lett. 23, 517 (1998).
[CrossRef]

Klimov, I.

U. Bader, J. Bartschke, I. Klimov, A. Borsutzky, and R. Wallenstein, Opt. Commun. 147, 95 (1998).
[CrossRef]

Lawerence, M.

G. J. Edwards and M. Lawerence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Ley, J. M.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, Appl. Phys. B 67, 267 (1998).
[CrossRef]

R. S. Conroy, C. F. Rae, G. J. Friel, M. H. Dunn, B. D. Sinclair, and J. M. Ley, Opt. Lett. 23, 1348 (1998).
[CrossRef]

Padgett, M. J.

Rae, C. F.

Sinclair, B. D.

Stothard, D. J. M.

D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, Opt. Lett. 23, 1897 (1998).
[CrossRef]

Wallenstein, R.

U. Bader, J. Bartschke, I. Klimov, A. Borsutzky, and R. Wallenstein, Opt. Commun. 147, 95 (1998).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, IEEE Photon. Technol. Lett. 9, 925 (1997).
[CrossRef]

Appl. Phys. B (1)

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, Appl. Phys. B 67, 267 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. J. Zayhowski, IEEE Photon. Technol. Lett. 9, 925 (1997).
[CrossRef]

Opt. Commun. (1)

U. Bader, J. Bartschke, I. Klimov, A. Borsutzky, and R. Wallenstein, Opt. Commun. 147, 95 (1998).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawerence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the semimonolithic intracavity, Q-switched OPO. The microchip laser forms the 1064-nm pump cavity with the external face of the PPLN, whereas the signal cavity is formed between the intracavity and the external face of the PPLN. The overall cavity length was 30 mm.

Fig. 2
Fig. 2

Pulse duration (filled shapes) and peak power (open shapes) of the signal pulses from both the Nd:YAG and Nd:YVO4 systems as a function of absorbed pump power. Both systems were operated at their optimum repetition rates, 1 and 5 kHz, respectively.

Fig. 3
Fig. 3

Energy of the emitted pump (open shapes) and signal (filled shapes) pulses for the Nd:YAG and Nd:YVO4 systems as the Q-switch frequency was varied while the gain materials were pumped at their maximum absorbed powers.

Fig. 4
Fig. 4

Tuning range of the signal (open shapes) and idler (filled shapes) pulses of the eight PPLN grating periods (symbols) over the available temperature range 20–110 °C.

Metrics