Abstract

We demonstrate efficient frequency conversion with large frequency shifts of an anti-Stokes signal into a parametrically seeded Stokes idler, which is generated by a highly mismatched three-wave mixing interaction and subsequent Raman amplification in a normally dispersive single-mode fiber. The use of non-phase-matched waves in Raman-assisted three-wave mixing interactions overcomes the strict spectral limitations imposed by phase-matching conditions in parametric frequency-conversion processes.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  2. K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
    [CrossRef] [PubMed]
  3. G. Cappellini and S. Trillo, J. Opt. Soc. Am. B 8, 824 (1991).
    [CrossRef]
  4. Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
    [CrossRef]
  5. S. Trillo and S. Wabnitz, J. Opt. Soc. Am. B 9, 1061 (1992).
    [CrossRef]
  6. E. Lantz, D. Gindre, H. Maillotte, and J. Monneret, J. Opt. Soc. Am. B 14, 116 (1997).
    [CrossRef]
  7. E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).
  8. R. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
    [CrossRef]
  9. J. P. Pocholle, J. Raffy, M. Papuchon, and E. Desurvire, Opt. Eng. 24, 600 (1985).

1997 (1)

1992 (1)

1991 (1)

1989 (1)

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

1986 (1)

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

1985 (1)

J. P. Pocholle, J. Raffy, M. Papuchon, and E. Desurvire, Opt. Eng. 24, 600 (1985).

1977 (1)

R. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

1965 (1)

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Bloembergen, N.

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
[CrossRef]

Cappellini, G.

Desurvire, E.

J. P. Pocholle, J. Raffy, M. Papuchon, and E. Desurvire, Opt. Eng. 24, 600 (1985).

Dianov, E. M.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

Gindre, D.

Golovchenko, E.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

Hasegawa, A.

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Hellwarth, R.

R. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

Lantz, E.

Maillotte, H.

Mamyshev, P. V.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

Monneret, J.

Papuchon, M.

J. P. Pocholle, J. Raffy, M. Papuchon, and E. Desurvire, Opt. Eng. 24, 600 (1985).

Pilipetskii, A. N.

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

Pocholle, J. P.

J. P. Pocholle, J. Raffy, M. Papuchon, and E. Desurvire, Opt. Eng. 24, 600 (1985).

Raffy, J.

J. P. Pocholle, J. Raffy, M. Papuchon, and E. Desurvire, Opt. Eng. 24, 600 (1985).

Shen, Y. R.

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
[CrossRef]

Tai, K.

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Tomita, A.

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Trillo, S.

Wabnitz, S.

J. Opt. Soc. Am. B (3)

JETP Lett. (1)

E. Golovchenko, E. M. Dianov, P. V. Mamyshev, and A. N. Pilipetskii, JETP Lett. 50, 190 (1989).

Opt. Eng. (1)

J. P. Pocholle, J. Raffy, M. Papuchon, and E. Desurvire, Opt. Eng. 24, 600 (1985).

Phys. Rev. (1)

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
[CrossRef]

Phys. Rev. Lett. (1)

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

R. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Theoretical phase-space portrait of the pump. (b) Variation of the normalized powers ηjz-ηj0 versus propagation coordinate z in the absence of Raman effects. ρ=0, j=0 (pump), j=1 (idler), j=2 (signal), ω0=563.9 THz, P00=100 W, P20=5 W, and Ω=6.6 THz. Dotted–dashed curve, pump; dashed curve, idler; solid curve, signal. In all the simulations the input idler power was the noise level in the fiber, which we took as P10=5×10-3 W in our model.

Fig. 2
Fig. 2

Variation of normalized powers ηjz-ηj0 versus propagation coordinate z in the presence of Raman effects. ρ=0.18 and P20=5 W.

Fig. 3
Fig. 3

Experimental output spectra measured for several pump powers P00 and detuning frequencies Ω=ω2-ω0; ω0=563.9 THz and P20=0.5 W. Values of Ω (in terahertz) are shown for all figures.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E=12j=02Ej+c.c.=12j=021αNjEjzψjx,y×expikjz-ωjt+c.c.,
η0z=-2γ0Ae0η0PTIH1100η1-IH0022η2+RH2010η1η2sin ϕ,
η1z=2γ1Ae1η1PTIH1100η0+IH1122η2+RH0102sin ϕ+IH0102×cos ϕη0η2/η1,
η2z=2γ2Ae2η2PT-IH0022η0-IH1122η1+RH0102sin ϕ-IH0102×cos ϕη0η1/η2,
ϕz=Δkr sin ϕ+Δk+Δknr+PTγ2Ae2η1/η2+γ1Ae1η2/η1η0RH0102-2γ0Ae0RH2010η1η2cos ϕ,
Δknrγ2Ae2PTη2Ae2+η0RH0022+η1RH1122+γ1Ae1PTη1Ae1+η0RH1100+η2RH1122-2γ0Ae0PTη0Ae0+η1RH1100+η2RH0022,
Δkrη0PTIH0102γ2Ae2η1/η2-γ1Ae1η2/η1,
Hiijj1ζiijj{21-ρ+ρ[χr0+χr(ωi-ωj]},H0i0j1ζ0i0j1-ρ+ρχrωi-ω0,Hi0j01ζi0j021-ρ+ρχrωi-ω0+χrωj-ω0,ζijlmNiNjNlNm1/2ψiψjψlψmdxdy,

Metrics