Abstract

We describe a synchronously pumped femtosecond optical parametric oscillator based on periodically poled LiNbO3 that is broadly tunable in the mid infrared. A transmission window of periodically poled lithium niobate beyond the conventionally accepted infrared absorption edge of 5.4 µm has been exploited to produce idler pulses that are tunable across a wavelength range of 4 µm, with milliwatt-level output powers at wavelengths as long as 6.8 µm. We also present experimental tuning results that are in good agreement with the theoretical phase matching predicted from published infrared-corrected Sellmeier equations for LiNbO3.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Marzenell, R. Beigang, and R. Wallenstein, in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), p. 35, paper CMG4.
  2. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Opt. Lett. 22, 1458 (1997).
    [CrossRef]
  3. L. Lefort, K. Peuch, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
    [CrossRef]
  4. L. Lefort, K. Peuch, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
    [CrossRef]
  5. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  6. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]

1998 (2)

L. Lefort, K. Peuch, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

L. Lefort, K. Peuch, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

1997 (2)

1995 (1)

Arbore, M. A.

Beigang, R.

S. Marzenell, R. Beigang, and R. Wallenstein, in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), p. 35, paper CMG4.

Bosenberg, W. R.

Burr, K. C.

Butterworth, S. D.

L. Lefort, K. Peuch, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Byer, R. L.

Eckardt, R. C.

Fejer, M. M.

Hanna, D. C.

L. Lefort, K. Peuch, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

L. Lefort, K. Peuch, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Jundt, D. H.

L. Lefort, K. Peuch, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

D. H. Jundt, Opt. Lett. 22, 1553 (1997).
[CrossRef]

Lefort, L.

L. Lefort, K. Peuch, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

L. Lefort, K. Peuch, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Marzenell, S.

S. Marzenell, R. Beigang, and R. Wallenstein, in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), p. 35, paper CMG4.

Myers, L. E.

Peuch, K.

L. Lefort, K. Peuch, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

L. Lefort, K. Peuch, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

Pierce, J. W.

Ross, G. W.

L. Lefort, K. Peuch, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

L. Lefort, K. Peuch, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Smith, P. G. R.

L. Lefort, K. Peuch, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Svirko, Y. P.

L. Lefort, K. Peuch, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

Tang, C. L.

Wallenstein, R.

S. Marzenell, R. Beigang, and R. Wallenstein, in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), p. 35, paper CMG4.

Appl. Phys. Lett. (1)

L. Lefort, K. Peuch, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

L. Lefort, K. Peuch, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Opt. Lett. (2)

Other (1)

S. Marzenell, R. Beigang, and R. Wallenstein, in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), p. 35, paper CMG4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured transmission of a 1-mm long LiNbO3 sample for incident light polarized parallel to the extraordinary and the ordinary crystal axes. The extraordinary wave interaction of PPLN permits OPO operation within the transmission window at wavelengths above 6.0 µm.

Fig. 2
Fig. 2

Idler and corresponding signal spectra obtained across the tuning range of the OPO. Continuous tunability was achieved by a combination of cavity length, pump wavelength, and grating period tuning.

Fig. 3
Fig. 3

Signal (circles) and idler (diamonds) output wavelengths measured from the OPO operated with PPLN grating periods of 17.5, 18.0, 18.5, 19.0, 19.5, and 20.0 µm. The gain coefficient, sinc2Δkl/2, calculated with an IR-corrected Sellmeier equation for PPLN, is shown in gray scale, with white representing zero and black representing unity.

Fig. 4
Fig. 4

Idler output power as a function of wavelength (CaF2 mirror transmission is not taken into account).

Metrics