Abstract

Fast and reconfigurable one-dimensional waveguides are produced by interband photorefraction. The index barriers are induced by ultraviolet light. The guiding of a red laser beam with a full width at half-maximum of 15 µm is demonstrated. Buildup and decay times of the waveguide in pure KNbO3 are of the order of 100 µs and 10 ms, respectively. The intensity of the guided light has no influence on the guiding properties over the range from 4 mW/cm2 to 200 W/cm2. By reconfiguration of the waveguide, deflection angles of as much as 1.75 deg inside the crystal are achieved.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for instance, P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990).
  2. A. Bekker, A. Pada’el, N. K. Berger, M. Horowitz, and B. Fischer, Appl. Phys. Lett. 72, 3121 (1998).
    [CrossRef]
  3. P. Günter and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vol. 1.
    [CrossRef]
  4. D. Kip, Appl. Phys. B 67, 131 (1998).
    [CrossRef]
  5. K. Itoh, O. Matoba, and Y. Ichioka, Opt. Lett. 19, 652 (1994).
    [CrossRef] [PubMed]
  6. O. Matoba, T. Inujima, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 15, 2006 (1998).
    [CrossRef]
  7. M.-F. Shih, Z. G. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, J. Opt. Soc. Am. B 14, 3091 (1997).
    [CrossRef]
  8. M. Segev and G. Stegeman, Phys. Today 51(8), 42 (1998).
    [CrossRef]
  9. G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Opt. Lett. 18, 1144 (1993).
    [CrossRef]
  10. G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Phys. Rev. B 49, 2484 (1994).
    [CrossRef]
  11. M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter, J. Appl. Phys. 74, 1287 (1993).
    [CrossRef]
  12. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), p. 240.

1998 (4)

A. Bekker, A. Pada’el, N. K. Berger, M. Horowitz, and B. Fischer, Appl. Phys. Lett. 72, 3121 (1998).
[CrossRef]

D. Kip, Appl. Phys. B 67, 131 (1998).
[CrossRef]

O. Matoba, T. Inujima, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 15, 2006 (1998).
[CrossRef]

M. Segev and G. Stegeman, Phys. Today 51(8), 42 (1998).
[CrossRef]

1997 (1)

1994 (2)

K. Itoh, O. Matoba, and Y. Ichioka, Opt. Lett. 19, 652 (1994).
[CrossRef] [PubMed]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Phys. Rev. B 49, 2484 (1994).
[CrossRef]

1993 (2)

M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter, J. Appl. Phys. 74, 1287 (1993).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Opt. Lett. 18, 1144 (1993).
[CrossRef]

Bekker, A.

A. Bekker, A. Pada’el, N. K. Berger, M. Horowitz, and B. Fischer, Appl. Phys. Lett. 72, 3121 (1998).
[CrossRef]

Berger, N. K.

A. Bekker, A. Pada’el, N. K. Berger, M. Horowitz, and B. Fischer, Appl. Phys. Lett. 72, 3121 (1998).
[CrossRef]

Biaggio, I.

M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter, J. Appl. Phys. 74, 1287 (1993).
[CrossRef]

Butcher, P. N.

See, for instance, P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990).

Chen, Z. G.

Cotter, D.

See, for instance, P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990).

Feigelson, R. S.

Fischer, B.

A. Bekker, A. Pada’el, N. K. Berger, M. Horowitz, and B. Fischer, Appl. Phys. Lett. 72, 3121 (1998).
[CrossRef]

Günter, P.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Phys. Rev. B 49, 2484 (1994).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Opt. Lett. 18, 1144 (1993).
[CrossRef]

M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter, J. Appl. Phys. 74, 1287 (1993).
[CrossRef]

Horowitz, M.

A. Bekker, A. Pada’el, N. K. Berger, M. Horowitz, and B. Fischer, Appl. Phys. Lett. 72, 3121 (1998).
[CrossRef]

Ichioka, Y.

Inujima, T.

Itoh, K.

Kip, D.

D. Kip, Appl. Phys. B 67, 131 (1998).
[CrossRef]

Kuroda, K.

Lee, H.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), p. 240.

Matoba, O.

Mitchell, M.

Montemezzani, G.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Phys. Rev. B 49, 2484 (1994).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Opt. Lett. 18, 1144 (1993).
[CrossRef]

Pada’el, A.

A. Bekker, A. Pada’el, N. K. Berger, M. Horowitz, and B. Fischer, Appl. Phys. Lett. 72, 3121 (1998).
[CrossRef]

Rogin, P.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Phys. Rev. B 49, 2484 (1994).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Opt. Lett. 18, 1144 (1993).
[CrossRef]

Schlesser, R.

M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter, J. Appl. Phys. 74, 1287 (1993).
[CrossRef]

Segev, M.

Shih, M.-F.

Shimura, T.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), p. 240.

Stegeman, G.

M. Segev and G. Stegeman, Phys. Today 51(8), 42 (1998).
[CrossRef]

Tscherry, J.

M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter, J. Appl. Phys. 74, 1287 (1993).
[CrossRef]

Voit, E.

M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter, J. Appl. Phys. 74, 1287 (1993).
[CrossRef]

Wilde, J. P.

Zgonik, M.

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Phys. Rev. B 49, 2484 (1994).
[CrossRef]

M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter, J. Appl. Phys. 74, 1287 (1993).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Opt. Lett. 18, 1144 (1993).
[CrossRef]

Appl. Phys. B (1)

D. Kip, Appl. Phys. B 67, 131 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

A. Bekker, A. Pada’el, N. K. Berger, M. Horowitz, and B. Fischer, Appl. Phys. Lett. 72, 3121 (1998).
[CrossRef]

J. Appl. Phys. (1)

M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter, J. Appl. Phys. 74, 1287 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rev. B (1)

G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, Phys. Rev. B 49, 2484 (1994).
[CrossRef]

Phys. Today (1)

M. Segev and G. Stegeman, Phys. Today 51(8), 42 (1998).
[CrossRef]

Other (3)

P. Günter and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vol. 1.
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), p. 240.

See, for instance, P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic (a) top and (b) front views of the experimental setup. L1 and L2 and CL1 and CL2 are spherical and cylindrical lenses, respectively. (b) The intensity distribution of the He–Ne beam at the front and exit faces of the waveguide.

Fig. 2
Fig. 2

Top, CCD images of the intensity distribution of the probe beam at the exit face of the waveguide 240 µm×240 µm. The UV light is incident from the left side. Bottom, corresponding one-dimensional beam profiles along the white dashed lines. (a) E=0, UV illumination off, (b) E=0, UV on, (c) E=4.8 kV/cm, UV off, (d) E=4.8 kV/cm, UV on.

Fig. 3
Fig. 3

Dependence of the vertical beam width (FWHM) on (a) applied electric field E and (b) incident UV intensity.

Fig. 4
Fig. 4

Buildup (open circles) and dark-decay time constants (filled circles) of the induced waveguide for various UV intensities at the crystal surface E=4.8 kV/cm.

Fig. 5
Fig. 5

Top, CCD images of the intensity distribution of the probe beam at the exit face of the waveguide for several deflection angles. Bottom, the integrated intensities of the guided and nonguided portions of the beam plotted as functions of the deflection angle inside the crystal. The dashed and dotted curves are guides to the eye.

Metrics