Abstract

We present a novel technique to frequency lock a laser to an optical cavity. This technique, tilt locking, utilizes a misalignment of the laser with respect to the cavity to produce a nonresonant spatial mode. By observing the interference between the carrier and the spatial mode one can obtain a quantum-noise-limited frequency discriminator. Tilt locking offers a number of potential benefits over existing locking schemes, including low cost, high sensitivity, and simple implementation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bondu, P. Fritschel, C. N. Mann, and A. Brillet, Opt. Lett. 21, 582 (1996).
    [CrossRef] [PubMed]
  2. K. Schneider, S. Schiller, J. Mlynek, M. Bode, and I. Freitag, Opt. Lett. 21, 1999 (1996).
    [CrossRef] [PubMed]
  3. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999).
    [CrossRef]
  4. P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore, 1994).
  5. R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
    [CrossRef]
  6. T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
    [CrossRef]
  7. A. D. White, IEEE J. Quantum Electron. 1, 349 (1965).
    [CrossRef]
  8. C. E. Wieman and S. L. Gilbert, Opt. Lett. 7, 480 (1982).
    [CrossRef] [PubMed]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  10. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  11. E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, Appl. Opt. 33, 5041 (1994).
    [CrossRef] [PubMed]
  12. N. M. Sampas and D. Z. Anderson, Appl. Opt. 29, 394 (1990).
    [CrossRef] [PubMed]

1999

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999).
[CrossRef]

1996

1994

1990

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1982

1980

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

1973

R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

1965

A. D. White, IEEE J. Quantum Electron. 1, 349 (1965).
[CrossRef]

Anderson, D. Z.

Barger, R. L.

R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Bergquist, J. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999).
[CrossRef]

Bode, M.

Bondu, F.

Brillet, A.

Couillaud, B.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Freitag, I.

Fritschel, P.

Gilbert, S. L.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Itano, W. M.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Mann, C. N.

Meers, B. J.

Mlynek, J.

Morrison, E.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Robertson, D. I.

Sampas, N. M.

Saulson, P. R.

P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore, 1994).

Schiller, S.

Schneider, K.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Sorem, M. S.

R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Ward, H.

E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, Appl. Opt. 33, 5041 (1994).
[CrossRef] [PubMed]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

White, A. D.

A. D. White, IEEE J. Quantum Electron. 1, 349 (1965).
[CrossRef]

Wieman, C. E.

Young, B. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. Lett.

R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

IEEE J. Quantum Electron.

A. D. White, IEEE J. Quantum Electron. 1, 349 (1965).
[CrossRef]

Opt. Commun.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999).
[CrossRef]

Other

P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore, 1994).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) TEM00 and TEM01 transverse electric-field amplitudes. (b) Intensity distribution of TEM00 (dark circle) and TEM01 (light ellipses) on the split photodiode. Vector summation of electric fields on both diode halves with TEM00 (c) on resonance and (d) slightly off resonance.

Fig. 2
Fig. 2

Experimental arrangement for single- and double-pass tilt locking.

Fig. 3
Fig. 3

Power and error signal for (a) single-pass tilt, (b) double-pass tilt, and (c) PDH locking for a cavity with a finesse of 200. Note that the power in (a) is reflected intensity, whereas (b) and (c) are the transmitted intensities.

Fig. 4
Fig. 4

(a) Error signal frequency spectra for PDH locking and single-pass tilt locking for a cavity with a finesse of 4000. (b) Laser intensity noise over the same frequency range.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I0,1=--u˜00*x,yu˜01x,ydxdy=0,
I0,1=--0u˜00*x,yu˜01x,ydxdy--0u˜00*x,yu˜01x,ydxdy.

Metrics