Abstract

We report a novel application of self-injection locking. A diode laser is injection locked to its own frequency-shifted emission. By resonant phase modulation of the fed-back light, the laser’s emission frequency is shown to swing periodically through the locking range. The laser operates as a sweep generator driven by resonant self-injection locking.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
    [CrossRef]
  2. R. Lang, IEEE J. Quantum Electron. QE-18, 976 (1982).
    [CrossRef]
  3. C. H. Henry, N. A. Olsson, and N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
    [CrossRef]
  4. P. Spano, M. Tamburrini, and S. Piazzolla, J. Lightwave Technol. 7, 726 (1989).
    [CrossRef]
  5. R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, IEEE J. Quantum Electron. 27, 1688 (1991).
    [CrossRef]
  6. J. Troger, P.-A. Nicati, L. Thévenaz, and Ph. A. Robert, IEEE J. Quantum Electron. 35, 32 (1999).
    [CrossRef]
  7. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
    [CrossRef]
  8. D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
    [CrossRef]
  9. C. H. Henry and R. F. Kazarinov, IEEE J. Quantum Electron. QE-22, 294 (1986).
    [CrossRef]
  10. C. H. Henry, J. Lightwave Technol. 4, 298 (1986).
    [CrossRef]

1999 (1)

J. Troger, P.-A. Nicati, L. Thévenaz, and Ph. A. Robert, IEEE J. Quantum Electron. 35, 32 (1999).
[CrossRef]

1991 (1)

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, IEEE J. Quantum Electron. 27, 1688 (1991).
[CrossRef]

1989 (1)

P. Spano, M. Tamburrini, and S. Piazzolla, J. Lightwave Technol. 7, 726 (1989).
[CrossRef]

1986 (2)

C. H. Henry and R. F. Kazarinov, IEEE J. Quantum Electron. QE-22, 294 (1986).
[CrossRef]

C. H. Henry, J. Lightwave Technol. 4, 298 (1986).
[CrossRef]

1985 (2)

C. H. Henry, N. A. Olsson, and N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
[CrossRef]

D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
[CrossRef]

1982 (1)

R. Lang, IEEE J. Quantum Electron. QE-18, 976 (1982).
[CrossRef]

1981 (1)

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

1980 (1)

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

D’Ottavi, A.

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, IEEE J. Quantum Electron. 27, 1688 (1991).
[CrossRef]

den Boef, A. J.

D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
[CrossRef]

Dutta, N. K.

C. H. Henry, N. A. Olsson, and N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
[CrossRef]

Henry, C. H.

C. H. Henry, J. Lightwave Technol. 4, 298 (1986).
[CrossRef]

C. H. Henry and R. F. Kazarinov, IEEE J. Quantum Electron. QE-22, 294 (1986).
[CrossRef]

C. H. Henry, N. A. Olsson, and N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
[CrossRef]

Hui, R.

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, IEEE J. Quantum Electron. 27, 1688 (1991).
[CrossRef]

Kazarinov, R. F.

C. H. Henry and R. F. Kazarinov, IEEE J. Quantum Electron. QE-22, 294 (1986).
[CrossRef]

Kimura, T.

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Kobayashi, S.

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Lang, R.

R. Lang, IEEE J. Quantum Electron. QE-18, 976 (1982).
[CrossRef]

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Lenstra, D.

D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
[CrossRef]

Mecozzi, A.

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, IEEE J. Quantum Electron. 27, 1688 (1991).
[CrossRef]

Nicati, P.-A.

J. Troger, P.-A. Nicati, L. Thévenaz, and Ph. A. Robert, IEEE J. Quantum Electron. 35, 32 (1999).
[CrossRef]

Olsson, N. A.

C. H. Henry, N. A. Olsson, and N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
[CrossRef]

Piazzolla, S.

P. Spano, M. Tamburrini, and S. Piazzolla, J. Lightwave Technol. 7, 726 (1989).
[CrossRef]

Robert, Ph. A.

J. Troger, P.-A. Nicati, L. Thévenaz, and Ph. A. Robert, IEEE J. Quantum Electron. 35, 32 (1999).
[CrossRef]

Spano, P.

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, IEEE J. Quantum Electron. 27, 1688 (1991).
[CrossRef]

P. Spano, M. Tamburrini, and S. Piazzolla, J. Lightwave Technol. 7, 726 (1989).
[CrossRef]

Tamburrini, M.

P. Spano, M. Tamburrini, and S. Piazzolla, J. Lightwave Technol. 7, 726 (1989).
[CrossRef]

Thévenaz, L.

J. Troger, P.-A. Nicati, L. Thévenaz, and Ph. A. Robert, IEEE J. Quantum Electron. 35, 32 (1999).
[CrossRef]

Troger, J.

J. Troger, P.-A. Nicati, L. Thévenaz, and Ph. A. Robert, IEEE J. Quantum Electron. 35, 32 (1999).
[CrossRef]

Verbeek, B. H.

D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
[CrossRef]

IEEE J. Quantum Electron. (8)

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

R. Lang, IEEE J. Quantum Electron. QE-18, 976 (1982).
[CrossRef]

C. H. Henry, N. A. Olsson, and N. K. Dutta, IEEE J. Quantum Electron. QE-21, 1152 (1985).
[CrossRef]

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, IEEE J. Quantum Electron. 27, 1688 (1991).
[CrossRef]

J. Troger, P.-A. Nicati, L. Thévenaz, and Ph. A. Robert, IEEE J. Quantum Electron. 35, 32 (1999).
[CrossRef]

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quantum Electron. QE-21, 674 (1985).
[CrossRef]

C. H. Henry and R. F. Kazarinov, IEEE J. Quantum Electron. QE-22, 294 (1986).
[CrossRef]

J. Lightwave Technol. (2)

C. H. Henry, J. Lightwave Technol. 4, 298 (1986).
[CrossRef]

P. Spano, M. Tamburrini, and S. Piazzolla, J. Lightwave Technol. 7, 726 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup of the frequency-sweep generator experiment: The slave-laser radiation travels through 17.6 km of single-mode fiber and is phase modulated before a part of it is fed back into the slave laser. FC 1–FC 4, fiber couplers; PC 1–PC 4, polarization controllers. Mod., modulator; G, amplifier. Gs/s, gigasamples per second. The two isolators separate the sweep generator from the measuring instruments.

Fig. 2
Fig. 2

Time evolution of beat-note intensity (ac component) and related power spectrum of the self-injection-locked slave laser (a) without phase modulation and (b) with sinusoidal resonant phase modulation (Vm/Vπ0.27, fm=1.15 MHz). The feedback level is Pinj/Poutfr9.0×10-5. The frequency 0 refers to the emission frequency of the free-running slave and the reference laser. The spectra are normalized with respect to the power of the free-running slave laser.

Fig. 3
Fig. 3

Calculated variations over the locking range owing to feedback Pinj/Poutfr9.0×10-5 of (a) the active region carrier number and (b) the output power. Δν is the frequency difference between the fed-back signal and the output radiation of the free-running slave laser.

Fig. 4
Fig. 4

Instantaneous frequency variation of the fed-back light at the laser input after 1,2,3, round trips in the fiber loop. Owing to resonant phase modulation, the frequency variations add up constructively at each round trip, fm=2f0 in the illustrated case. 0 indicates the emission frequency of the free-running laser. The refractive-index-induced frequency variations are omitted.

Metrics