Abstract

We describe a phase-controlled, highly stable interferometer that is ideal for use in long-time and high-temperature studies. We recorded output intensity variations of <0.2% for over 6 h at temperatures up to 150 °C. The setup was used to study in situ the temperature and frequency characteristics of a thin polymer film composed of 4-dimethylamino-4-nitrostilbene doped into poly(methyl methacrylate). The mobility of the dopant molecules, which governed the electro-optic property of the film, was used to probe the dye-doped polymer’s rheology. We demonstrate one application of the interferometer in probing both the α and the β relaxations of the polymer.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved interferometer studies of linear electro-optic effects of dye-doped polymers

Fassil Ghebremichael and Hilary S. Lackritz
Appl. Opt. 36(18) 4081-4089 (1997)

Correlation between polymer architecture and sub-glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes

Zouheir Sekkat, Philippe Prêtre, André Knoesen, Willie Volksen, Victor Y. Lee, Robert D. Miller, Jonathan Wood, and Wolfgang Knoll
J. Opt. Soc. Am. B 15(1) 401-413 (1998)

Light-induced orientation in azo-polyimide polymers 325 °C below the glass transition temperature

Zouheir Sekkat, Jonathan Wood, Wolfgang Knoll, Willi Volksen, Robert D. Miller, and André Knoesen
J. Opt. Soc. Am. B 14(4) 829-833 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription