Abstract

We describe a phase-controlled, highly stable interferometer that is ideal for use in long-time and high-temperature studies. We recorded output intensity variations of <0.2% for over 6 h at temperatures up to 150 °C. The setup was used to study in situ the temperature and frequency characteristics of a thin polymer film composed of 4-dimethylamino-4-nitrostilbene doped into poly(methyl methacrylate). The mobility of the dopant molecules, which governed the electro-optic property of the film, was used to probe the dye-doped polymer’s rheology. We demonstrate one application of the interferometer in probing both the α and the β relaxations of the polymer.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ghebremichael, M. G. Kuzyk, and H. S. Lackritz, Prog. Polym. Sci.22, 1147 (1997).
    [CrossRef]
  2. K. D. Singer and L. A. King, J. Appl. Phys. 70, 3251 (1991); A. Dhinojwala, G. K. Wong, and J. M. Torkleson, Macromolecules 26, 5943 (1993); W. N. Herman and J. A. Cline, J. Opt. Soc. Am. B 15, 351 (1998); M. G. Kuzyk and C. Poga, in Molecular Optoelectronics: Materials, Physics and Devices, J. Zyss, ed. (Academic, San Diego, Calif., 1994), pp. 299–337.
    [CrossRef]
  3. G. P. Johari, Chem. Phys. 7, 4619 (1982).
  4. F. Ghebremichael and H. S. Lackritz, Appl. Opt. 36, 4081 (1997).
    [CrossRef] [PubMed]
  5. R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
    [CrossRef]
  6. M. G. Kuzyk, R. C. Moore, and L. A. King, J. Opt. Soc. Am. B 7, 64 (1990).
    [CrossRef]
  7. L. A. Sullivan and H. S. Lackritz, Mater. Res. Soc. Symp. Proc. 392, 69 (1995).
    [CrossRef]
  8. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymer Solids (Wiley, New York, 1967).

1997 (1)

1995 (1)

L. A. Sullivan and H. S. Lackritz, Mater. Res. Soc. Symp. Proc. 392, 69 (1995).
[CrossRef]

1994 (1)

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
[CrossRef]

1991 (1)

K. D. Singer and L. A. King, J. Appl. Phys. 70, 3251 (1991); A. Dhinojwala, G. K. Wong, and J. M. Torkleson, Macromolecules 26, 5943 (1993); W. N. Herman and J. A. Cline, J. Opt. Soc. Am. B 15, 351 (1998); M. G. Kuzyk and C. Poga, in Molecular Optoelectronics: Materials, Physics and Devices, J. Zyss, ed. (Academic, San Diego, Calif., 1994), pp. 299–337.
[CrossRef]

1990 (1)

1982 (1)

G. P. Johari, Chem. Phys. 7, 4619 (1982).

Ghebremichael, F.

F. Ghebremichael and H. S. Lackritz, Appl. Opt. 36, 4081 (1997).
[CrossRef] [PubMed]

F. Ghebremichael, M. G. Kuzyk, and H. S. Lackritz, Prog. Polym. Sci.22, 1147 (1997).
[CrossRef]

Johari, G. P.

G. P. Johari, Chem. Phys. 7, 4619 (1982).

Keosian, R. A.

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
[CrossRef]

King, L. A.

K. D. Singer and L. A. King, J. Appl. Phys. 70, 3251 (1991); A. Dhinojwala, G. K. Wong, and J. M. Torkleson, Macromolecules 26, 5943 (1993); W. N. Herman and J. A. Cline, J. Opt. Soc. Am. B 15, 351 (1998); M. G. Kuzyk and C. Poga, in Molecular Optoelectronics: Materials, Physics and Devices, J. Zyss, ed. (Academic, San Diego, Calif., 1994), pp. 299–337.
[CrossRef]

M. G. Kuzyk, R. C. Moore, and L. A. King, J. Opt. Soc. Am. B 7, 64 (1990).
[CrossRef]

Kuzyk, M. G.

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
[CrossRef]

M. G. Kuzyk, R. C. Moore, and L. A. King, J. Opt. Soc. Am. B 7, 64 (1990).
[CrossRef]

F. Ghebremichael, M. G. Kuzyk, and H. S. Lackritz, Prog. Polym. Sci.22, 1147 (1997).
[CrossRef]

Lackritz, H. S.

F. Ghebremichael and H. S. Lackritz, Appl. Opt. 36, 4081 (1997).
[CrossRef] [PubMed]

L. A. Sullivan and H. S. Lackritz, Mater. Res. Soc. Symp. Proc. 392, 69 (1995).
[CrossRef]

F. Ghebremichael, M. G. Kuzyk, and H. S. Lackritz, Prog. Polym. Sci.22, 1147 (1997).
[CrossRef]

McCrum, N. G.

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymer Solids (Wiley, New York, 1967).

Moore, R. C.

Norwood, R. A.

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
[CrossRef]

Read, B. E.

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymer Solids (Wiley, New York, 1967).

Singer, K. D.

K. D. Singer and L. A. King, J. Appl. Phys. 70, 3251 (1991); A. Dhinojwala, G. K. Wong, and J. M. Torkleson, Macromolecules 26, 5943 (1993); W. N. Herman and J. A. Cline, J. Opt. Soc. Am. B 15, 351 (1998); M. G. Kuzyk and C. Poga, in Molecular Optoelectronics: Materials, Physics and Devices, J. Zyss, ed. (Academic, San Diego, Calif., 1994), pp. 299–337.
[CrossRef]

Sullivan, L. A.

L. A. Sullivan and H. S. Lackritz, Mater. Res. Soc. Symp. Proc. 392, 69 (1995).
[CrossRef]

Williams, G.

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymer Solids (Wiley, New York, 1967).

Appl. Opt. (1)

Chem. Phys. (1)

G. P. Johari, Chem. Phys. 7, 4619 (1982).

J. Appl. Phys. (2)

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
[CrossRef]

K. D. Singer and L. A. King, J. Appl. Phys. 70, 3251 (1991); A. Dhinojwala, G. K. Wong, and J. M. Torkleson, Macromolecules 26, 5943 (1993); W. N. Herman and J. A. Cline, J. Opt. Soc. Am. B 15, 351 (1998); M. G. Kuzyk and C. Poga, in Molecular Optoelectronics: Materials, Physics and Devices, J. Zyss, ed. (Academic, San Diego, Calif., 1994), pp. 299–337.
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Res. Soc. Symp. Proc. (1)

L. A. Sullivan and H. S. Lackritz, Mater. Res. Soc. Symp. Proc. 392, 69 (1995).
[CrossRef]

Other (2)

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymer Solids (Wiley, New York, 1967).

F. Ghebremichael, M. G. Kuzyk, and H. S. Lackritz, Prog. Polym. Sci.22, 1147 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Interferometer setup: The beam from the laser is split by the first beam splitter (BS). The reference beam proceeds to the aluminum (Al) mirrors on the film after passing through a polarizing beam splitter (PBS) and a quarter-wave λ/4 plate; the process is repeated on the other side of the film.

Fig. 2
Fig. 2

Frequency spectrum of the output intensity at different incident angles, θin. The resonance peaks that are due to Δl diminish as the incident angle approaches the condition of Eq. (3).

Fig. 3
Fig. 3

Interferometer output stability with the incorporated feedback system. When the system is enabled, the output bias can be readily manipulated, depicted as steps and ramps in the figure.

Fig. 4
Fig. 4

The dependence of the effective electro-optic coefficient, ξ of a PMMA+2wt.% DANS film. The modulation and aligning fields were 30 and -200 V, respectively. The cross-sectional projection is from 5.5-kHz modulating frequency.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=2πλlΔns+nsΔl,
ϕr=2πλnair2t-l,ϕs=2πλnsl=2πλnslcos θn,
Δϕs-ϕr=2πλ2cos θn-1cos3 θnlΔns+nscos θn-2nairΔl.
2nair-nscos θn=0.
ϕgθg=ϕ0-2πλd1-cos θg+dng2-sin2 θg1/2,
IΩt=I0+IM cosϕg-ξ cos Ωt,
IΩtI0+IMcos ϕg+ξ sin ϕgcos Ωt.
IΩIoffs+ξ sin ϕg,
δΩ=tan-12πJ0ξJ1ξcot ϕg,

Metrics