Abstract

The optical trapping of nanoparticles and microparticles by a Gaussian standing wave is experimentally demonstrated for the first time to the authors’ knowledge. The standing wave is obtained under a microscope objective as a result of the interference of an incoming laser beam and a beam reflected on a microscope slide that has been coated with a system of reflective dielectric layers. Experimental results show that three-dimensional trapping of nanoparticles (100-nm polystyrene spheres) and one or more vertically aligned micro-objects (5µm polystyrene spheres, yeast cells) can easily be achieved by use of even highly aberrated beams or objectives with low numerical apertures.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  2. R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, Opt. Rev. 3, 11 (1996).
    [CrossRef]
  3. R. Omori, T. Kobayashi, and A. Suzuki, Opt. Lett. 22, 816 (1997).
    [CrossRef] [PubMed]
  4. A. Ashkin, J. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
    [CrossRef] [PubMed]
  5. D. Chiu and R. Zare, Chem-Eur J. 3, 335 (1997).
    [CrossRef]
  6. S. Sato and H. Inaba, Opt. Lett. 19, 927 (1994).
    [CrossRef] [PubMed]
  7. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, J. Appl. Phys. 82, 2773 (1997).
    [CrossRef]
  8. K. Taguchi, H. Ueno, and M. Ikeda, Electron. Lett. 33, 1249 (1997).
    [CrossRef]
  9. P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, Opt. Commun. 151, 273 (1998).
    [CrossRef]
  10. Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
    [CrossRef]
  11. J. Barton and D. Alexander, J. Appl. Phys. 66, 2800 (1989).
    [CrossRef]
  12. E. Fallman and O. Axner, Appl. Opt. 36, 2107 (1997).
    [CrossRef]
  13. R. Gussgard, T. Lindmo, and I. Brevik, J. Opt. Soc. Am. B 9, 1922 (1992).
    [CrossRef]
  14. T. Tlusty, A. Meller, and R. Bar-Ziv, Phys. Rev. Lett. 81, 1738 (1998).
    [CrossRef]
  15. J. M. Khosrofian and B. A. Garetz, Appl. Opt. 22, 3406 (1983).
    [CrossRef]

1998

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, Opt. Commun. 151, 273 (1998).
[CrossRef]

T. Tlusty, A. Meller, and R. Bar-Ziv, Phys. Rev. Lett. 81, 1738 (1998).
[CrossRef]

1997

E. Fallman and O. Axner, Appl. Opt. 36, 2107 (1997).
[CrossRef]

R. Omori, T. Kobayashi, and A. Suzuki, Opt. Lett. 22, 816 (1997).
[CrossRef] [PubMed]

D. Chiu and R. Zare, Chem-Eur J. 3, 335 (1997).
[CrossRef]

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, J. Appl. Phys. 82, 2773 (1997).
[CrossRef]

K. Taguchi, H. Ueno, and M. Ikeda, Electron. Lett. 33, 1249 (1997).
[CrossRef]

1996

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, Opt. Rev. 3, 11 (1996).
[CrossRef]

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

1994

1992

1989

J. Barton and D. Alexander, J. Appl. Phys. 66, 2800 (1989).
[CrossRef]

1987

A. Ashkin, J. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef] [PubMed]

1986

1983

Alexander, D.

J. Barton and D. Alexander, J. Appl. Phys. 66, 2800 (1989).
[CrossRef]

Asakura, T.

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

Ashkin, A.

Axner, O.

Barton, J.

J. Barton and D. Alexander, J. Appl. Phys. 66, 2800 (1989).
[CrossRef]

Bar-Ziv, R.

T. Tlusty, A. Meller, and R. Bar-Ziv, Phys. Rev. Lett. 81, 1738 (1998).
[CrossRef]

Bjorkholm, J.

Brevik, I.

Chiu, D.

D. Chiu and R. Zare, Chem-Eur J. 3, 335 (1997).
[CrossRef]

Chu, S.

Dziedzic, J.

Fallman, E.

Garetz, B. A.

Gussgard, R.

Harada, Y.

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

Higurashi, E.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, J. Appl. Phys. 82, 2773 (1997).
[CrossRef]

Ikeda, M.

K. Taguchi, H. Ueno, and M. Ikeda, Electron. Lett. 33, 1249 (1997).
[CrossRef]

Inaba, H.

Jonáš, A.

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, Opt. Commun. 151, 273 (1998).
[CrossRef]

Khosrofian, J. M.

Kobayashi, T.

R. Omori, T. Kobayashi, and A. Suzuki, Opt. Lett. 22, 816 (1997).
[CrossRef] [PubMed]

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, Opt. Rev. 3, 11 (1996).
[CrossRef]

Lindmo, T.

Liška, M.

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, Opt. Commun. 151, 273 (1998).
[CrossRef]

Meller, A.

T. Tlusty, A. Meller, and R. Bar-Ziv, Phys. Rev. Lett. 81, 1738 (1998).
[CrossRef]

Miyamoto, S.

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, Opt. Rev. 3, 11 (1996).
[CrossRef]

Ohguchi, O.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, J. Appl. Phys. 82, 2773 (1997).
[CrossRef]

Omori, R.

R. Omori, T. Kobayashi, and A. Suzuki, Opt. Lett. 22, 816 (1997).
[CrossRef] [PubMed]

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, Opt. Rev. 3, 11 (1996).
[CrossRef]

Sato, S.

Sawada, R.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, J. Appl. Phys. 82, 2773 (1997).
[CrossRef]

Šrámek, L.

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, Opt. Commun. 151, 273 (1998).
[CrossRef]

Suzuki, A.

R. Omori, T. Kobayashi, and A. Suzuki, Opt. Lett. 22, 816 (1997).
[CrossRef] [PubMed]

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, Opt. Rev. 3, 11 (1996).
[CrossRef]

Taguchi, K.

K. Taguchi, H. Ueno, and M. Ikeda, Electron. Lett. 33, 1249 (1997).
[CrossRef]

Tamamura, T.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, J. Appl. Phys. 82, 2773 (1997).
[CrossRef]

Tlusty, T.

T. Tlusty, A. Meller, and R. Bar-Ziv, Phys. Rev. Lett. 81, 1738 (1998).
[CrossRef]

Ueno, H.

K. Taguchi, H. Ueno, and M. Ikeda, Electron. Lett. 33, 1249 (1997).
[CrossRef]

Ukita, H.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, J. Appl. Phys. 82, 2773 (1997).
[CrossRef]

Yamane, T.

A. Ashkin, J. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef] [PubMed]

Zare, R.

D. Chiu and R. Zare, Chem-Eur J. 3, 335 (1997).
[CrossRef]

Zemánek, P.

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, Opt. Commun. 151, 273 (1998).
[CrossRef]

Appl. Opt.

Chem-Eur J.

D. Chiu and R. Zare, Chem-Eur J. 3, 335 (1997).
[CrossRef]

Electron. Lett.

K. Taguchi, H. Ueno, and M. Ikeda, Electron. Lett. 33, 1249 (1997).
[CrossRef]

J. Appl. Phys.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, J. Appl. Phys. 82, 2773 (1997).
[CrossRef]

J. Barton and D. Alexander, J. Appl. Phys. 66, 2800 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Nature

A. Ashkin, J. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef] [PubMed]

Opt. Commun.

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, Opt. Commun. 151, 273 (1998).
[CrossRef]

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

Opt. Lett.

Opt. Rev.

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, Opt. Rev. 3, 11 (1996).
[CrossRef]

Phys. Rev. Lett.

T. Tlusty, A. Meller, and R. Bar-Ziv, Phys. Rev. Lett. 81, 1738 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. Two telescopes are used to expand the beam such that it slightly overfills the objective’s back aperture. The movement of telescope lenses F3 and F1 permits lateral and axial positioning of the trap without power losses on the back micro-objective aperture. Insets A and B demonstrate the 3-D confinement of the object in the single beam trap and in the standing-wave trap, respectively.

Fig. 2
Fig. 2

100-nm particles trapped in one SWT near the microscope slide R=0.4%. Total optical power in the specimen plane, 7 mW; objective NA, 0.6. a, Two 100-nm spheres, 1 and 2, trapped approximately 1 µm above the bottom. The arrow indicates reference objects lying on the bottom. Particle 3 moves randomly through the medium, as can be seen from the changes in the sharpness of its image (cf. a and b), whereas the trapped particles and the reference objects remain equally sharp. c, Particle 3 consequently enters the trap and moves simultaneously with the other two trapped particles, as indicated by the change in the position of the reference objects. d, Finally, the trapping beam is switched off and the particles travel away in random directions.

Fig. 3
Fig. 3

Simultaneous manipulation of a group of yeast cells: a, cells 1 and 2 in the trap; b, cell 3 enters the trap; c, simultaneous movement of the three cells; d, reference cell 4 enters the trap.

Metrics