Abstract

The optical trapping of nanoparticles and microparticles by a Gaussian standing wave is experimentally demonstrated for the first time to the authors’ knowledge. The standing wave is obtained under a microscope objective as a result of the interference of an incoming laser beam and a beam reflected on a microscope slide that has been coated with a system of reflective dielectric layers. Experimental results show that three-dimensional trapping of nanoparticles (100-nm polystyrene spheres) and one or more vertically aligned micro-objects (5µm polystyrene spheres, yeast cells) can easily be achieved by use of even highly aberrated beams or objectives with low numerical apertures.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription