Abstract

Metals typically have very large nonlinear susceptibilities (?106 times larger than those of typical dielectrics), but because they are nearly opaque their nonlinear properties are effectively inaccessible. We demonstrate numerically that a multilayer metal–dielectric structure in which the metal is the dominant nonlinear ?3 material can have much larger intensity-dependent changes in the complex amplitude of the transmitted beam than a bulk sample containing the same thickness of metal. For 80 nm of copper the magnitude of the nonlinear phase shift is predicted to be as much as 40 times larger for the layered copper–silica sample, and the transmission is also greatly increased. The effective nonlinear refractive-index coefficient n2 of this composite material can be as large as 3+6i×10-9 cm2/W, which is among the largest values for known, reasonably transmissive materials.

© 1999 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription