Abstract

Holey fibers combine two-dimensional microstructuring with one-dimensional longitudinal propagation, resulting in fibers with tailorable dispersive and nonlinear properties. We measure the effective nonlinearity of a typical holey fiber. The small effective area that is possible in this type of fiber significantly enhances its effective nonlinearity relative to standard fiber.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, B. Managan, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
    [CrossRef] [PubMed]
  4. J. M. Senior, Optical Fiber Communications (Prentice-Hall, Englewood Cliffs, N.J., 1992).
  5. P. J. Bennett, T. M. Monro, and D. J. Richardson, presented at the European Conference on Communications, Nice, France, September, 1999.
  6. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, J. Lightwave Technol. 17, 1093 (1999).
    [CrossRef]
  7. T. M. Monro, D. J. Richardson, and P. J. Bennett, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), p. 158.
  8. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, Opt. Lett. 21, 1966 (1996).
    [CrossRef] [PubMed]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  10. J. K. Ranka, R. S. Windeler, and A. J. Stentz, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), postdeadline paper CPD8.

1999

1998

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

1997

1996

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Bennett, P. J.

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, J. Lightwave Technol. 17, 1093 (1999).
[CrossRef]

P. J. Bennett, T. M. Monro, and D. J. Richardson, presented at the European Conference on Communications, Nice, France, September, 1999.

T. M. Monro, D. J. Richardson, and P. J. Bennett, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), p. 158.

Birks, T. A.

Boskovic, A.

Broderick, N. G. R.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

Chernikov, S. V.

de Sandro, J. P.

Gruner-Nielsen, L.

Knight, J. C.

Levring, O. A.

Managan, B.

Monro, T. M.

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, J. Lightwave Technol. 17, 1093 (1999).
[CrossRef]

P. J. Bennett, T. M. Monro, and D. J. Richardson, presented at the European Conference on Communications, Nice, France, September, 1999.

T. M. Monro, D. J. Richardson, and P. J. Bennett, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), p. 158.

Ranka, J. K.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), postdeadline paper CPD8.

Richardson, D. J.

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, J. Lightwave Technol. 17, 1093 (1999).
[CrossRef]

P. J. Bennett, T. M. Monro, and D. J. Richardson, presented at the European Conference on Communications, Nice, France, September, 1999.

T. M. Monro, D. J. Richardson, and P. J. Bennett, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), p. 158.

Russell, P. St. J.

Senior, J. M.

J. M. Senior, Optical Fiber Communications (Prentice-Hall, Englewood Cliffs, N.J., 1992).

Stentz, A. J.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), postdeadline paper CPD8.

Taylor, J. R.

Windeler, R. S.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), postdeadline paper CPD8.

J. Lightwave Technol.

Opt. Lett.

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

Other

J. M. Senior, Optical Fiber Communications (Prentice-Hall, Englewood Cliffs, N.J., 1992).

P. J. Bennett, T. M. Monro, and D. J. Richardson, presented at the European Conference on Communications, Nice, France, September, 1999.

T. M. Monro, D. J. Richardson, and P. J. Bennett, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), p. 158.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

J. K. Ranka, R. S. Windeler, and A. J. Stentz, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), postdeadline paper CPD8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning-electron micrograph of the HF, along with the predicted mode profile at 1550 nm, with contours separated by 1 dB. As can be seen, the mode is not circular. The HF is attached to the inner wall of a larger protective jacket (top left).

Fig. 2
Fig. 2

Typical measured spectrum for the nonlinear mixing in the HF. The dashed curve is the input spectrum, and the solid curve is the transmitted spectrum. Note the large increase in power in the sidebands owing to self-phase modulation.

Fig. 3
Fig. 3

Experimental plot of the nonlinear phase versus internal peak power for both the HF (squares) and the DSF (circles). The least-squares fits to the experimental data are shown.

Fig. 4
Fig. 4

Spectra of the Brillouin spectra for HF (solid curve) and DSF (dashed curve) for the same transmitted power. Note that multiple Brillouin lines are generated in the HF owing to the smaller effective area.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I0I1=J02ϕSPM/2+J12ϕSPM/2J12ϕSPM/2+J22ϕSPM/2,
ϕSPM=2ω0cγLP,
γ=n2/Aeff,

Metrics