Abstract

We present an experimental observation of the dynamics of an initially chirped optical soliton at 1.55 µm that is propagating through a single-mode optical fiber, using frequency-resolved optical gating (FROG). FROG permits observation of both the amplitude and the phase profiles of ultrashort pulses, providing complete information on the pulse evolution. The features that are detected, which include what is believed to be the first experimental observation of phase slips, are in quantitative agreement with numerical simulations that employ the nonlinear Schrödinger equation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1971).
    [CrossRef]
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  3. R. Trebino, K. W. DeLong, D. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  4. M. D. Thompson, J. M. Dudley, L. P. Barry, and J. D. Harvey, Opt. Lett. 23, 1582 (1998).
    [CrossRef]
  5. J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, R. Leonhardt, and P. D. Drummond, Opt. Lett. 22, 457 (1997).
    [CrossRef] [PubMed]
  6. F. G. Omenetto, J. W. Nicholson, and A. J. Taylor, in Ultrafast Electronics and Optoelectronics 1999, J. Bowers and W. Knox, eds., Vol. 28 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 42.
  7. C. Desem and P. L. Chu, Opt. Lett. 11, 248 (1986).
    [CrossRef]

1998 (1)

1997 (2)

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, R. Leonhardt, and P. D. Drummond, Opt. Lett. 22, 457 (1997).
[CrossRef] [PubMed]

R. Trebino, K. W. DeLong, D. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

1986 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

1971 (1)

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1971).
[CrossRef]

Barry, L. P.

Bollond, P. G.

Chu, P. L.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Desem, C.

Drummond, P. D.

Dudley, J. M.

Fittinghoff, D.

R. Trebino, K. W. DeLong, D. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Harvey, J. D.

Hasegawa, A.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1971).
[CrossRef]

Kane, D.

R. Trebino, K. W. DeLong, D. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Leonhardt, R.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Nicholson, J. W.

F. G. Omenetto, J. W. Nicholson, and A. J. Taylor, in Ultrafast Electronics and Optoelectronics 1999, J. Bowers and W. Knox, eds., Vol. 28 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 42.

Omenetto, F. G.

F. G. Omenetto, J. W. Nicholson, and A. J. Taylor, in Ultrafast Electronics and Optoelectronics 1999, J. Bowers and W. Knox, eds., Vol. 28 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 42.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Sweetster, J.

R. Trebino, K. W. DeLong, D. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Tappert, F.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1971).
[CrossRef]

Taylor, A. J.

F. G. Omenetto, J. W. Nicholson, and A. J. Taylor, in Ultrafast Electronics and Optoelectronics 1999, J. Bowers and W. Knox, eds., Vol. 28 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 42.

Thompson, M. D.

Trebino, R.

R. Trebino, K. W. DeLong, D. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1971).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. Fittinghoff, J. Sweetster, M. A. Krumbugel, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Other (1)

F. G. Omenetto, J. W. Nicholson, and A. J. Taylor, in Ultrafast Electronics and Optoelectronics 1999, J. Bowers and W. Knox, eds., Vol. 28 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Intensity profile and phase profile (squares) of the initial pulse. The central part of the phase profile is fitted to a parabola to give the linear chirp parameters (1.9×10-5 fs2/nm). The experimental FROG trace is shown in the inset.

Fig. 2
Fig. 2

FROG traces of output pulses at 10 m with energies of (a) 228 pJ, (b) 255 pJ, (c) 294 pJ, and (d) 318 pJ.

Fig. 3
Fig. 3

Reconstructed intensity and phase profiles of output pulses at 10 m (left-hand column) and corresponding profiles from numerical simulation (right-hand column) for pulses with input energies of (a) 228 pJ, (b) 255 pJ, (c) 294 pJ, and (d) 318 pJ. The y axis represents the corresponding values of powers detected at the output of the fiber. The dashed curves in the right-hand column show the intensity profiles of the asymptotic soliton, whereas in both columns the thinner solid curves represent the phase and the thicker solid curves represent the intensity.

Fig. 4
Fig. 4

Further comparison of intensity and spectral profiles for the 318-pJ output pulse at 10 m, showing experimental profiles (left-hand column) and corresponding profiles from numerical simulation (right-hand column). (a) Log-linear plot of the intensity profiles, (b) log-linear plot of the power spectra (in arbitrary units). The dashed curves in (a) and the open circles in (b) show the intensity and the spectral profiles of pure solitons of the same peak intensity, for comparison.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

qZ,τ;η,κ=η sechητ+κZ×exp-iκτ+i2η2-κ2Z.

Metrics