Abstract

We report operation of a tunable optical parametric oscillator that employs a nonlinear-fiber Sagnac interferometer as a parametric amplifier. The amplifier, which consists primarily of dispersion-shifted fiber that has zero dispersion at 1538  nm, is synchronously pumped with 7.7-ps pulses at 1539  nm. The wide bandwidth of the parametric gain permits tuning of the output signal pulses over a 40-nm range centered on the pump wavelength. The Sagnac interferometer decouples the pump wave from the oscillator cavity while a bandpass filter in the cavity transmits only the signal wave, thereby creating a singly resonant parametric oscillator that is phase insensitive. Whereas we demonstrate tuning over almost the entire bandwidth of Er-doped-fiber amplifiers, one could construct a similar device that operates near the 1310-nm zero-dispersion wavelength of standard telecommunication fiber.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg and R. C. Eckardt, eds., feature on optical parametric devices, J. Opt. Soc. Am. B12, 2084–2320 (1995).
  2. M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
    [CrossRef]
  3. E. A. Swanson and J. D. Moores, IEEE Photon. Technol. Lett. 6, 1341 (1994).
    [CrossRef]
  4. K. Mori, T. Morioka, and M. Saruwatari, Opt. Lett. 21, 110 (1996).
    [CrossRef] [PubMed]
  5. D. K. Serkland, G. D. Bartolini, A. Agarwal, P. Kumar, and W. L. Kath, Opt. Lett. 23, 795 (1998).
    [CrossRef]
  6. R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
    [CrossRef]
  7. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, Opt. Lett. 21, 573 (1996).
    [CrossRef] [PubMed]
  8. G. A. Nowak, Y.-H. Kao, T. J. Xia, M. N. Islam, and D. Nolan, Opt. Lett. 23, 936 (1998).
    [CrossRef]

1998 (2)

1996 (2)

1994 (1)

E. A. Swanson and J. D. Moores, IEEE Photon. Technol. Lett. 6, 1341 (1994).
[CrossRef]

1989 (1)

M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

1982 (1)

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

Agarwal, A.

Bartolini, G. D.

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

Chiang, T.-K.

Haus, H. A.

M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

Islam, M. N.

Kagi, N.

Kao, Y.-H.

Kath, W. L.

Kazovsky, L. G.

Kumar, P.

Marhic, M. E.

Moores, J. D.

E. A. Swanson and J. D. Moores, IEEE Photon. Technol. Lett. 6, 1341 (1994).
[CrossRef]

Mori, K.

Morioka, T.

Nakazawa, M.

M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

Nolan, D.

Nowak, G. A.

Saruwatari, M.

Serkland, D. K.

Stolen, R. H.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

Suzuki, K.

M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

Swanson, E. A.

E. A. Swanson and J. D. Moores, IEEE Photon. Technol. Lett. 6, 1341 (1994).
[CrossRef]

Xia, T. J.

IEEE J. Quantum Electron. (2)

M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. 18, 1062 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. A. Swanson and J. D. Moores, IEEE Photon. Technol. Lett. 6, 1341 (1994).
[CrossRef]

Opt. Lett. (4)

Other (1)

W. R. Bosenberg and R. C. Eckardt, eds., feature on optical parametric devices, J. Opt. Soc. Am. B12, 2084–2320 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Nondegenerate parametric gain Gs versus detuning from the pump wavelength. The plots assume a nonlinear phase shift γPpL of 1.75  rad and three different values of the net dispersion β2L: 0.025 ps2 (dotted curve), -0.075 ps2 (dashed curve), and -0.010 ps2 (solid curve).

Fig. 2
Fig. 2

Schematic of the experimental setup: The incident and the reflected pump powers are monitored at ports Pi and Pr, respectively. ML, mode-locked.

Fig. 3
Fig. 3

Spectra of the FOPO output. (a) The signal-plus-idler output (dotted curve) before the grating and the signal output (solid curve) after reflection from the grating. (b) Composite of the signal output peaks observed for ten different settings of the grating angle.

Fig. 4
Fig. 4

Autocorrelation traces of the input pump pulses (wide curve) and the output signal pulses (narrow curve). The solid curves are the theoretical autocorrelation functions of sech2(t/T0) pulses, with the parameter T0 varied to yield the best fit to the data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Gs=cosh2(gL)+(δk2g)2 sinh2(gL),
δk=2γPp+2m=1β2m(2m)!(ωs-ωp)2m,

Metrics