Abstract

A new, simple method to measure the nonlinear refraction and absorption of bulk material and waveguides is proposed. The method relies on the evolution of the intensity and width of femtosecond-pulse spectra, owing to self-phase modulation, as a function of variable chirp and stretching introduced at the input.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, and E. W. Stryland, Opt. Lett. 14, 955 (1989).
    [CrossRef] [PubMed]
  2. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. 26, 760 (1989).
    [CrossRef]
  3. M. C. Gabriel, N. A. Whitaker, C. W. Dirk, M. G. Kuzyck, and M. Thakur, Opt. Lett. 16, 1334 (1991).
    [CrossRef] [PubMed]
  4. I. Kang, T. Krauss, and F. Wise, Opt. Lett. 22, 1077 (1997).
    [CrossRef] [PubMed]
  5. A. Owyoung, IEEE J. Quantum Electron. QE-9, 1064 (1973).
    [CrossRef]
  6. E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, Opt. Commun. 119, 479 (1995).
    [CrossRef]
  7. A. J. Taylor, G. Rodriguez, and T. S. Clement, Opt. Lett. 21, 1812 (1996).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  9. J.-G. Tian, W. P. Zang, and G. Zhang, Opt. Commun. 107, 415 (1994).
    [CrossRef]
  10. T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, Opt. Lett. 19, 317 (1994).
    [CrossRef] [PubMed]

1997 (1)

1996 (1)

1995 (1)

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, Opt. Commun. 119, 479 (1995).
[CrossRef]

1994 (2)

1991 (1)

1989 (2)

M. Sheik-Bahae, A. A. Said, and E. W. Stryland, Opt. Lett. 14, 955 (1989).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. 26, 760 (1989).
[CrossRef]

1973 (1)

A. Owyoung, IEEE J. Quantum Electron. QE-9, 1064 (1973).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

Clement, T. S.

Dirk, C. W.

Franco, M. A.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, Opt. Commun. 119, 479 (1995).
[CrossRef]

Gabriel, M. C.

Grillon, G.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, Opt. Commun. 119, 479 (1995).
[CrossRef]

Hagan, D. J.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, Opt. Lett. 19, 317 (1994).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. 26, 760 (1989).
[CrossRef]

Kang, I.

Krauss, T.

Kuzyck, M. G.

Le Blanc, C.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, Opt. Commun. 119, 479 (1995).
[CrossRef]

Mysyrowicz, A.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, Opt. Commun. 119, 479 (1995).
[CrossRef]

Nibbering, E. T. J.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, Opt. Commun. 119, 479 (1995).
[CrossRef]

Owyoung, A.

A. Owyoung, IEEE J. Quantum Electron. QE-9, 1064 (1973).
[CrossRef]

Prade, B. S.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, Opt. Commun. 119, 479 (1995).
[CrossRef]

Rodriguez, G.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. 26, 760 (1989).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Stryland, Opt. Lett. 14, 955 (1989).
[CrossRef] [PubMed]

Sheik-Bahae, M.

Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. 26, 760 (1989).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Stryland, Opt. Lett. 14, 955 (1989).
[CrossRef] [PubMed]

Taylor, A. J.

Thakur, M.

Tian, J.-G.

J.-G. Tian, W. P. Zang, and G. Zhang, Opt. Commun. 107, 415 (1994).
[CrossRef]

Van Stryland, E. W.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. 26, 760 (1989).
[CrossRef]

Whitaker, N. A.

Wise, F.

Xia, T.

Zang, W. P.

J.-G. Tian, W. P. Zang, and G. Zhang, Opt. Commun. 107, 415 (1994).
[CrossRef]

Zhang, G.

J.-G. Tian, W. P. Zang, and G. Zhang, Opt. Commun. 107, 415 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Stryland, IEEE J. Quantum Electron. 26, 760 (1989).
[CrossRef]

A. Owyoung, IEEE J. Quantum Electron. QE-9, 1064 (1973).
[CrossRef]

Opt. Commun. (2)

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, Opt. Commun. 119, 479 (1995).
[CrossRef]

J.-G. Tian, W. P. Zang, and G. Zhang, Opt. Commun. 107, 415 (1994).
[CrossRef]

Opt. Lett. (5)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for nonlinear refraction measurement with the dispersive-scan (D-scan) method: OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Peak spectral intensity at the output of the nonlinear sample versus the dispersion introduced at the input for increasing peak nonlinear phase shifts Δϕ0 of (top to bottom) 0.2, 0.44, 0.68, 0.91, and 1.15 rad.

Fig. 3
Fig. 3

Output pulse spectral width [FWHM intensity (FWHMI)] versus dispersion for the same peak nonlinear phase shifts as in Fig. 1.

Fig. 4
Fig. 4

D-scan measurement of the Kerr nonlinearity of a single-mode silica fiber sample. Data on the spectral intensity versus dispersion (asterisks) obtained with pulses of 73-fs duration at 830 nm. The fit to a theoretical (solid) curve provides a nonlinear refraction coefficient n2=3.1±0.19×10-11 m2/GW.

Fig. 5
Fig. 5

D-scan measurement of the Kerr nonlinearity of a single-mode silica fiber sample. Measured spectral width (FWHM intensity) versus dispersion (asterisks) obtained in the same situation as shown in Fig. 4, together with a theoretical fit (solid curve).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Edt=E1-i2a2ϕ1/2exp-a2-i2a4ϕ1+4a4ϕ2t2.

Metrics