Abstract

Holograms have been recorded in congruent LiTaO3:Fe with continuous-wave laser light by use of a two-step process. Blue gating light λ=488 nm sensitizes the crystals for holographic recording with red light λ=660 nm of a diode laser. Refractive-index changes of as much as 1.0×10-5 are achieved for intensities of the red light of 1 W/cm2. The saturation values are proportional to the intensity of the writing light. Nondestructive readout with red light is possible, and the holograms remain erasable for blue light.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Krätzig and R. Orlowski, Appl. Phys. 15, 133 (1978).
  2. D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
    [CrossRef]
  3. H. Vormann and E. Krätzig, Solid State Commun. 49, 843 (1984).
    [CrossRef]
  4. J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B (to be published).
  5. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, Appl. Opt. 37, 7611 (1998).
    [CrossRef]
  6. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, Science 282, 1089 (1998).
    [CrossRef] [PubMed]
  7. P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, J. Appl. Phys. 78, 4647 (1995).
    [CrossRef]
  8. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  9. L. A. Kappers, K. L. Sweeney, L. E. Halliburton, and J. H. W. Liaw, Phys. Rev. B 31, 6792 (1985).
    [CrossRef]

1998 (2)

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, Appl. Opt. 37, 7611 (1998).
[CrossRef]

1995 (1)

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, J. Appl. Phys. 78, 4647 (1995).
[CrossRef]

1985 (1)

L. A. Kappers, K. L. Sweeney, L. E. Halliburton, and J. H. W. Liaw, Phys. Rev. B 31, 6792 (1985).
[CrossRef]

1984 (1)

H. Vormann and E. Krätzig, Solid State Commun. 49, 843 (1984).
[CrossRef]

1978 (1)

E. Krätzig and R. Orlowski, Appl. Phys. 15, 133 (1978).

1974 (1)

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Akella, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Bird, C. D.

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, J. Appl. Phys. 78, 4647 (1995).
[CrossRef]

Bordui, P. F.

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, J. Appl. Phys. 78, 4647 (1995).
[CrossRef]

Buse, K.

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B (to be published).

Carella, J. T.

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, J. Appl. Phys. 78, 4647 (1995).
[CrossRef]

Furukawa, Y.

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Guenther, H.

Halliburton, L. E.

L. A. Kappers, K. L. Sweeney, L. E. Halliburton, and J. H. W. Liaw, Phys. Rev. B 31, 6792 (1985).
[CrossRef]

Hesselink, L.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Imbrock, J.

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B (to be published).

Kappers, L. A.

L. A. Kappers, K. L. Sweeney, L. E. Halliburton, and J. H. W. Liaw, Phys. Rev. B 31, 6792 (1985).
[CrossRef]

Kitamura, K.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Krätzig, E.

H. Vormann and E. Krätzig, Solid State Commun. 49, 843 (1984).
[CrossRef]

E. Krätzig and R. Orlowski, Appl. Phys. 15, 133 (1978).

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B (to be published).

Lande, D.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Liaw, J. H. W.

L. A. Kappers, K. L. Sweeney, L. E. Halliburton, and J. H. W. Liaw, Phys. Rev. B 31, 6792 (1985).
[CrossRef]

Liu, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Macfarlane, R.

Neurgaonkar, R.

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, Appl. Opt. 37, 7611 (1998).
[CrossRef]

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Norwood, R. G.

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, J. Appl. Phys. 78, 4647 (1995).
[CrossRef]

Orlov, S.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Orlowski, R.

E. Krätzig and R. Orlowski, Appl. Phys. 15, 133 (1978).

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Sweeney, K. L.

L. A. Kappers, K. L. Sweeney, L. E. Halliburton, and J. H. W. Liaw, Phys. Rev. B 31, 6792 (1985).
[CrossRef]

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Vormann, H.

H. Vormann and E. Krätzig, Solid State Commun. 49, 843 (1984).
[CrossRef]

Wevering, S.

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B (to be published).

Appl. Opt. (1)

Appl. Phys. (1)

E. Krätzig and R. Orlowski, Appl. Phys. 15, 133 (1978).

Appl. Phys. Lett. (1)

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

J. Appl. Phys. (1)

P. F. Bordui, R. G. Norwood, C. D. Bird, and J. T. Carella, J. Appl. Phys. 78, 4647 (1995).
[CrossRef]

Phys. Rev. B (1)

L. A. Kappers, K. L. Sweeney, L. E. Halliburton, and J. H. W. Liaw, Phys. Rev. B 31, 6792 (1985).
[CrossRef]

Science (1)

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, Science 282, 1089 (1998).
[CrossRef] [PubMed]

Solid State Commun. (1)

H. Vormann and E. Krätzig, Solid State Commun. 49, 843 (1984).
[CrossRef]

Other (1)

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Refractive-index change for a typical write–read–erase cycle. The hologram is recorded with a 660-nm diode laser Iwriting=0.65 W/cm2 and white light from a Xe lamp for gating. Nondestructive readout is performed with one of the writing beams, and hologram erasure is possible with the gating light.

Fig. 2
Fig. 2

Two-center charge-transport model in LiTaO3:Fe. Deep center, Fe2+/3+; shallow center, TaLi4+/5+; VB, valence band; CB, conduction band.

Fig. 3
Fig. 3

Saturation values ΔnS of refractive-index changes as a function of the writing intensity Iwriting for two different gating intensities. The lines are linear fits to the measured values.

Fig. 4
Fig. 4

Inverse time constant 1/τwriting for hologram writing and photoconductivity σphoto versus gating intensity at 488 nm. The curve is a fit according to σphoto=aIgating+bIgating2, where a and b represent fit parameters.

Fig. 5
Fig. 5

Dependence of photorefractive sensitivity S on the gating intensity at 488 nm. The curve is a fit according to S=aIgating/b+Igating.

Metrics