Abstract

We examined the holographic recording properties of polyester containing cyanoazobenzene units in the side chain. It was revealed that, when a linearly polarized object beam with an arbitrary polarization direction was recorded, the retrieved beam had the same polarization state as that of the object beam, with a constant diffraction efficiency of 0.1. Moreover, two object beams with mutually orthogonal linear polarization could be recorded and retrieved separately from the same area. This is, to our knowledge, the first example of holographic polarization multiplexing. The retrieved images were found to resolve details of 40 line pairs/mm and a 40µm-pitched checkerboard pattern. The resolution of the system is limited by the CCD cameras that are used. Polarization encoding to increase the storage capacity and (or) the signal-to-noise ratio of holographic data recording is also discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
    [CrossRef] [PubMed]
  2. A. Pu and D. Psaltis, Appl. Opt. 35, 2389 (1996).
    [CrossRef] [PubMed]
  3. T. Todorov, L. Nikilova, and N. Tomova, Appl. Opt. 23, 4588 (1984).
    [CrossRef]
  4. K. Nakagawa, M. Sato, and H. Fujiwara, Opt. Rev. 2, 460 (1995).
    [CrossRef]
  5. K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).
  6. M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
    [CrossRef]
  7. G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, Opt. Lett. 23, 1218 (1998).
    [CrossRef]

1998 (1)

1996 (2)

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

A. Pu and D. Psaltis, Appl. Opt. 35, 2389 (1996).
[CrossRef] [PubMed]

1995 (1)

K. Nakagawa, M. Sato, and H. Fujiwara, Opt. Rev. 2, 460 (1995).
[CrossRef]

1994 (2)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

1984 (1)

Barking, G.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

Burr, G. W.

Coufal, H.

Fujiwara, H.

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

K. Nakagawa, M. Sato, and H. Fujiwara, Opt. Rev. 2, 460 (1995).
[CrossRef]

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Hayakawa, M.

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

Hoffnagle, J. A.

Jefferson, C. M.

Komatsu, R.

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

Mukaida, K.

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Nakagawa, K.

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

K. Nakagawa, M. Sato, and H. Fujiwara, Opt. Rev. 2, 460 (1995).
[CrossRef]

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Nikilova, L.

Psaltis, D.

Pu, A.

Sato, M.

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

K. Nakagawa, M. Sato, and H. Fujiwara, Opt. Rev. 2, 460 (1995).
[CrossRef]

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Todorov, T.

Tomova, N.

Appl. Opt. (2)

Macromol. Rapid Commun. (1)

M. Sato, M. Hayakawa, K. Nakagawa, K. Mukaida, and H. Fujiwara, Macromol. Rapid Commun. 15, 21 (1994).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

K. Nakagawa, M. Sato, and H. Fujiwara, Opt. Rev. 2, 460 (1995).
[CrossRef]

Proc. SPIE (1)

K. Nakagawa, R. Komatsu, H. Fujiwara, and M. Sato, Proc. SPIE 2778, 571 (1996).

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Molecular structure of polyesters containing cyanoazobenzene units in the side chain.

Fig. 2
Fig. 2

Experimental setup for holographic recording and retrieval of polarized light: The SLM produced object beams by rotation of the polarization axes of incident lights. The data page was then Fourier transformed into the polyester film by lens L1 and imaged through lens L2 onto a CCD camera. Polarizing beam splitter PBS2 divided the retrieval data into two orthogonal polarization components. Polarizing beam splitter PBS1 divided the incident beam into reference and object beams. λ/2, half-wave. See text for other definitions.

Fig. 3
Fig. 3

Polarization axes of the retrieval data as a function of those of the object beam. The experimental data showed that the polarization states of the object beam could be recorded and retrieved.

Fig. 4
Fig. 4

(a) Example of an image reconstructed from a polarization multiplexed hologram; (b) normal and (c) parallel polarization images of the reconstructed image.

Fig. 5
Fig. 5

(a) Example of an object beam encoded by multiple polarization axes from the normal to the parallel direction; (b) normal and (c) parallel polarization images of the retrieved data.

Metrics