Abstract

We present what is believed to be the first experimental evidence showing the breakup of a chirped N-soliton pulse into an ordered train of fundamental solitons, as predicted by theory. We also present numerical experiments that confirm this phenomenon. Implications for optical communications systems that use chirped pulses are discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, A. Hasegawa, ed., New Trends in Optical Soliton Transmission Systems (Kluwer Academic, Dordrecht, The Netherlands, 1998).
    [CrossRef]
  2. J. C. Bronski, Physica D 97, 376 (1996).
    [CrossRef]
  3. J. C. Bronski and J. N. Kutz, Phys. Lett. A 256, 325 (1999).
    [CrossRef]
  4. S. R. Friberg and K. W. Delong, Opt. Lett. 17, 979 (1992).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  6. P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge U. Press, Cambridge, 1990).
  7. J. C. Bronski and D. W. McLaughlin, in Singular Limits of Dispersive Waves, NATO ASI Ser. B Phys.320 (Plenum, New York, 1994), pp. 21–38.
    [CrossRef]
  8. M. G. Forest and J. E. Lee, in Oscillation Theory, Computation and Methods of Compensated Compactness, Vol. 2 of IMA Volumes in Mathematics and Its Applications (Springer-Verlag, Berlin, 1986), pp. 35–70.
    [CrossRef]

1999 (1)

J. C. Bronski and J. N. Kutz, Phys. Lett. A 256, 325 (1999).
[CrossRef]

1996 (1)

J. C. Bronski, Physica D 97, 376 (1996).
[CrossRef]

1992 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Bronski, J. C.

J. C. Bronski and J. N. Kutz, Phys. Lett. A 256, 325 (1999).
[CrossRef]

J. C. Bronski, Physica D 97, 376 (1996).
[CrossRef]

J. C. Bronski and D. W. McLaughlin, in Singular Limits of Dispersive Waves, NATO ASI Ser. B Phys.320 (Plenum, New York, 1994), pp. 21–38.
[CrossRef]

Delong, K. W.

Drazin, P. G.

P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge U. Press, Cambridge, 1990).

Forest, M. G.

M. G. Forest and J. E. Lee, in Oscillation Theory, Computation and Methods of Compensated Compactness, Vol. 2 of IMA Volumes in Mathematics and Its Applications (Springer-Verlag, Berlin, 1986), pp. 35–70.
[CrossRef]

Friberg, S. R.

Johnson, R. S.

P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge U. Press, Cambridge, 1990).

Kutz, J. N.

J. C. Bronski and J. N. Kutz, Phys. Lett. A 256, 325 (1999).
[CrossRef]

Lee, J. E.

M. G. Forest and J. E. Lee, in Oscillation Theory, Computation and Methods of Compensated Compactness, Vol. 2 of IMA Volumes in Mathematics and Its Applications (Springer-Verlag, Berlin, 1986), pp. 35–70.
[CrossRef]

McLaughlin, D. W.

J. C. Bronski and D. W. McLaughlin, in Singular Limits of Dispersive Waves, NATO ASI Ser. B Phys.320 (Plenum, New York, 1994), pp. 21–38.
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (1)

J. C. Bronski and J. N. Kutz, Phys. Lett. A 256, 325 (1999).
[CrossRef]

Physica D (1)

J. C. Bronski, Physica D 97, 376 (1996).
[CrossRef]

Other (5)

See, for example, A. Hasegawa, ed., New Trends in Optical Soliton Transmission Systems (Kluwer Academic, Dordrecht, The Netherlands, 1998).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge U. Press, Cambridge, 1990).

J. C. Bronski and D. W. McLaughlin, in Singular Limits of Dispersive Waves, NATO ASI Ser. B Phys.320 (Plenum, New York, 1994), pp. 21–38.
[CrossRef]

M. G. Forest and J. E. Lee, in Oscillation Theory, Computation and Methods of Compensated Compactness, Vol. 2 of IMA Volumes in Mathematics and Its Applications (Springer-Verlag, Berlin, 1986), pp. 35–70.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Numerical simulation of Eq. (1), showing the breakup of a pulse given a strongly chirped initial condition in a low-dispersion, anomalous optical fiber. Note the ejection of pairs of fundamental solitons that propagate away from the center with a speed that is determined by their height.

Fig. 2
Fig. 2

Schematic of the experimental configuration: OPO, optical parametric oscillator; DSF, dispersion-shifted fiber.

Fig. 3
Fig. 3

Left, experimentally achieved autocorrelation as a function of input powers of (a) 9, (b) 13, and (c) 19 mW and, right, autocorrelation generated from the numerical data of Fig. 1 at (d) Z=1, (e) Z=2, and (f) Z=4.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

iϵQZ+ϵ222QT2+Q2Q=0,
ϵ2=λ03DAeff/4π2cn2E02T0/1.762,
iQZ+1ϵQ2Q=0,
QZ,T=Q0,TexpiQ0,T2Z/ϵ.
AZ=VAT+12AVT, VZ=VVT-2AVT+ϵ22T1A2AT2,
Q0,T=sechTexp2i sechT/ϵ.

Metrics