Abstract

Remarkable changes in the two-dimensional angular optical scattering (TAOS) pattern are observed when an acoustically levitated water droplet with inclusions evolves into a dry aggregate. The emergence of polystyrene latex sphere inclusions near the droplet surface has a clear effect on the TAOS. A speckle pattern in the TAOS replaces the continuous contours associated with Mie scattering from a smooth droplet. Once the contours break up, this speckle pattern persists as the levitated droplet evaporates, making the transition from a droplet with inclusions to a dried aggregate. The initial emergence of the speckle pattern is observed for an inclusion volume fraction near 8%.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Mackowski and M. I. Mishchenko, J. Opt. Soc. Am. A 13, 2266 (1996).
    [CrossRef]
  2. G. Videen, W. Sun, and Q. Fu, Opt. Commun. 156, 5 (1998).
    [CrossRef]
  3. R. H. Zerull, B. Å. S. Gustafson, K. Schulz, and E. Thiele-Corbach, Appl. Opt. 32, 4088 (1993).
    [CrossRef] [PubMed]
  4. Y.-L. Xu and B. Å. S. Gustafson, Appl. Opt. 36, 8026 (1997).
    [CrossRef]
  5. S. Holler, Y.-L. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, and D. B. Hillis, Opt. Lett. 23, 1489 (1998).
    [CrossRef]
  6. F. Borghese, P. Denti, and R. Saija, Appl. Opt. 33, 484 (1994).
    [CrossRef] [PubMed]
  7. K. A. Fuller, J. Opt. Soc. Am. A 12, 893 (1995).
    [CrossRef]
  8. G. Videen and P. Chylek, Opt. Commun. 158, 1 (1998).
    [CrossRef]
  9. B. V. Bronk, M. J. Smith, and S. Arnold, Opt. Lett. 18, 93 (1993).
    [CrossRef] [PubMed]
  10. J. Gu, T. E. Ruekgauer, J.-G. Xie, and R. L. Armstrong, Opt. Lett. 18, 1293 (1993).
    [CrossRef]
  11. P. Pellegrino, G. Videen, and R. G. Pinnick, Appl. Opt. 36, 7672 (1997).
    [CrossRef]
  12. L. V. King, Proc. R. Soc. London Ser. A 147, 212 (1934).
    [CrossRef]
  13. M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
    [CrossRef]
  14. S. Arnold, S. Holler, J. H. Li, A. Serpengüzel, W. F. Auffermann, and S. C. Hill, Opt. Lett. 20, 773 (1995).
    [CrossRef] [PubMed]
  15. P. L. Marston, Opt. Lett. 10, 588 (1985).
    [CrossRef] [PubMed]

1998

G. Videen, W. Sun, and Q. Fu, Opt. Commun. 156, 5 (1998).
[CrossRef]

S. Holler, Y.-L. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, and D. B. Hillis, Opt. Lett. 23, 1489 (1998).
[CrossRef]

G. Videen and P. Chylek, Opt. Commun. 158, 1 (1998).
[CrossRef]

1997

1996

1995

1994

1993

1985

1934

L. V. King, Proc. R. Soc. London Ser. A 147, 212 (1934).
[CrossRef]

Armstrong, R. L.

Arnold, S.

Auffermann, W. F.

Barnes, M. D.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
[CrossRef]

Borghese, F.

Bottiger, J. R.

Bronk, B. V.

Chang, R. K.

Chylek, P.

G. Videen and P. Chylek, Opt. Commun. 158, 1 (1998).
[CrossRef]

Denti, P.

Fu, Q.

G. Videen, W. Sun, and Q. Fu, Opt. Commun. 156, 5 (1998).
[CrossRef]

Fuller, K. A.

Gu, J.

Gustafson, B. Å. S.

Hill, S. C.

Hillis, D. B.

Holler, S.

King, L. V.

L. V. King, Proc. R. Soc. London Ser. A 147, 212 (1934).
[CrossRef]

Lermer, N.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
[CrossRef]

Li, J. H.

Mackowski, D. W.

Marston, P. L.

Mishchenko, M. I.

Pan, Y.-L.

Pellegrino, P.

Pinnick, R. G.

Ramsey, J. M.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
[CrossRef]

Ruekgauer, T. E.

Saija, R.

Schulz, K.

Serpengüzel, A.

Smith, M. J.

Sun, W.

G. Videen, W. Sun, and Q. Fu, Opt. Commun. 156, 5 (1998).
[CrossRef]

Thiele-Corbach, E.

Videen, G.

G. Videen, W. Sun, and Q. Fu, Opt. Commun. 156, 5 (1998).
[CrossRef]

G. Videen and P. Chylek, Opt. Commun. 158, 1 (1998).
[CrossRef]

P. Pellegrino, G. Videen, and R. G. Pinnick, Appl. Opt. 36, 7672 (1997).
[CrossRef]

Whitten, W. B.

M. D. Barnes, N. Lermer, W. B. Whitten, and J. M. Ramsey, Rev. Sci. Instrum. 68, 2287 (1997).
[CrossRef]

Xie, J.-G.

Xu, Y.-L.

Zerull, R. H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the acoustic levitator used to suspended the particles. (b) Collection configuration for near-simultaneous measurement of the TAOS and of the particle image with white light passing through a shutter.

Fig. 2
Fig. 2

(a) Water droplet (340 µm in diameter) containing 22µm-diameter psl spheres as inclusions. (b) Observed TAOS for the droplet in (a). (c) Same water droplet <1 min later. (d) TAOS from the droplets in (c). The effect of the inclusions with high density is to break up the TAOS pattern from continuous rings to a patchy intensity distribution.

Fig. 3
Fig. 3

(a) Nearly spherical water droplet with inclusions. (b) TAOS for the droplet in (a). (c) Water droplet 2 min after insertion. (d) TAOS for the drop in (c), showing the characteristic hyperbolic umbilic diffraction catastrophe of an oblate spheroid with D/H=1.22. (e) Water droplet 8 min after insertion. The psl spheres can be seen circulating in the interior. (f) TAOS for the droplet in (e). The speckle pattern that appears is due to multiple-scattering events among the inclusions. (g) Nearly spherical aggregates of the psl sphere inclusions that emerges after all the water evaporates. (h) TAOS from the cluster in (g).

Tables (1)

Tables Icon

Table 1 Summary of the Droplet Images in Fig. 3

Metrics