Abstract

The dynamic behavior of single-channel transmission in standard fibers with strong dispersion management and linear compensating devices was theoretically and numerically analyzed. We compared a single pulse and a pseudorandom sequence to highlight the relevant roles played by nonlinearity-induced spectrum distortion and pulse interaction. As a result, 40Gbit/s transmission on an 1800-km dispersion-management link with 100-km spans of standard fiber was obtained.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Govan, W. Forysiak, and N. J. Doran, Opt. Lett. 23, 1523 (1998).
    [CrossRef]
  2. K. Ennser, R. I. Laming, and M. N. Zervas, J. Lightwave Technol. 16, 807 (1998).
    [CrossRef]
  3. T. Georges, J. Opt. Soc. Am. B 15, 1553 (1998).
    [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  5. M. Zitelli, F. Matera, and M. Settembre, “Single-channel transmission in dispersion management links in conditions of very strong pulse broadening:?application to 40 Gbit/s signals on step-index fibers,” J. Lightwave Technol. (to be published).
  6. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Network (Wiley, New York, 1998).

1998 (3)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Doran, N. J.

Ennser, K.

Forysiak, W.

Georges, T.

Govan, D. S.

Iannone, E.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Network (Wiley, New York, 1998).

Laming, R. I.

Matera, F.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Network (Wiley, New York, 1998).

M. Zitelli, F. Matera, and M. Settembre, “Single-channel transmission in dispersion management links in conditions of very strong pulse broadening:?application to 40 Gbit/s signals on step-index fibers,” J. Lightwave Technol. (to be published).

Mecozzi, A.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Network (Wiley, New York, 1998).

Settembre, M.

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Network (Wiley, New York, 1998).

M. Zitelli, F. Matera, and M. Settembre, “Single-channel transmission in dispersion management links in conditions of very strong pulse broadening:?application to 40 Gbit/s signals on step-index fibers,” J. Lightwave Technol. (to be published).

Zervas, M. N.

Zitelli, M.

M. Zitelli, F. Matera, and M. Settembre, “Single-channel transmission in dispersion management links in conditions of very strong pulse broadening:?application to 40 Gbit/s signals on step-index fibers,” J. Lightwave Technol. (to be published).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

M. Zitelli, F. Matera, and M. Settembre, “Single-channel transmission in dispersion management links in conditions of very strong pulse broadening:?application to 40 Gbit/s signals on step-index fibers,” J. Lightwave Technol. (to be published).

E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Nonlinear Optical Communication Network (Wiley, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Bandwidth versus distance for a single pulse with TFWHM=5 ps at the input and for a system with β2=0 ps2/km. The ASE noise is not considered here. The prechirp is (a) 0, (b) 2000, and (c) 100 ps2, and the optimal input peak power P0 in is (a) 35, (b) 20, and (c) 50 mW.

Fig. 2
Fig. 2

Q factor versus distance in case (c) for a 32-bit coded sequence and in the presence of ASE noise with compensated higher-order dispersion.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δωz=1T01+C1+Cpr2+Cpr+CCpr21+Cpr221+C+Cpr2+8γP0 exp-α2zzC1+Cpr2+Cpr+CCpr21+Cpr21+C+Cpr23/21/2,
Δω11T01+γP0 exp-αzprT02β2CprCpr1+Cpr243/2.
Δω2T01+2γP0 exp-αzpr×T02β2C221+C223/2.
Δω2T01+0.77γP0 exp-αzprT02/β2.
expαT02Cprβ2-1αT02Cprβ2Cpr21+Cpr243/20.77.

Metrics