Abstract

We demonstrate experimentally second-harmonic generation in waveguides induced by photorefractive solitons and show that the conversion efficiency is improved considerably. These induced waveguides are flexible and can be generated in any crystalline direction that allows soliton formation, and thus offer broad tunability (by rotation of the crystal), which cannot exist in fabricated waveguides.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
    [CrossRef] [PubMed]
  2. M. Segev, M. Shih, and G. Valley, J. Opt. Soc. Am. B 13, 706 (1996).
    [CrossRef]
  3. M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, J. Opt. Soc. Am. B 14, 3091 (1997).
    [CrossRef]
  4. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, Opt. Lett. 24, 77 (1999).
    [CrossRef]
  5. S. Lan, E. DelRe, Z. Chen, M. Shih, and M. Segev, Opt. Lett. 24, 475 (1999).
    [CrossRef]
  6. M. Shih, M. Segev, and G. Salamo, Opt. Lett. 21, 931 (1996).
    [CrossRef] [PubMed]
  7. M. Morin, G. Duree, G. Salamo, and M. Segev, Opt. Lett. 20, 2066 (1995).
    [CrossRef] [PubMed]
  8. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  9. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
    [CrossRef] [PubMed]
  10. Thus far, we were able to demonstrate solitons within ±7° with the b axis in KNbO3.
  11. S. Lan, M. Shih, and M. Segev, Opt. Lett. 20, 1467 (1997).
    [CrossRef]

1999 (2)

1997 (2)

1996 (3)

1995 (1)

1992 (2)

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Chen, Z.

Crosignani, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
[CrossRef] [PubMed]

DelRe, E.

Duree, G.

Eckardt, R. C.

Feigelson, R. S.

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
[CrossRef] [PubMed]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Klotz, M.

Lan, S.

Lee, H.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Meng, H.

Mitchell, M.

Montgomery, S. R.

Morin, M.

Myers, L. E.

Salamo, G.

Salamo, G. J.

Segev, M.

Shih, M.

Valley, G.

Wilde, J. P.

Yariv, A.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SHG in a bulk and in a waveguide: a, SH power as a function of propagation distance, with a fixed beam width (z0 is fixed and L varies); b, SH power as a function of propagation distance, with L fixed and input beam width varying. Propagation A, in a waveguide without diffraction; B, with the beams diffracting and phase matching always satisfied; C, with the beams diffracting and phase matching deteriorating.

Fig. 2
Fig. 2

Experimental results with the active method: (a) input 488-nm beam, (b) output 488-nm beam without voltage, (c) output 488-nm soliton, (d) input 982-nm beam, (e) output 982-nm beam without voltage; (f) output 982-nm beam guided by the soliton.

Fig. 3
Fig. 3

Temporal response of the SH power after the voltage is turned on (squares). The dashed line is the SH power in a bulk crystal without voltage.

Fig. 4
Fig. 4

Experimental results with the passive method: (a) input fundamental beam, (b) output fundamental beam without voltage, (c) output fundamental beam a few seconds after the voltage is on, (d) output SH beam without voltage, (e) output SH beam a few seconds after the voltage is on.

Metrics