Abstract

A large photoinduced refractive-index change (as great as Δn=0.21±0.04) is obtained in lead silicate glasses by irradiation with the frequency-quadrupled output of a Q-switched YAG laser (266 nm). An approximately exponential relationship is found between the photoinduced refractive-index change and the lead cation mole fraction over the composition range from 18.7% to 57%. The induced refractive-index change is permanent and shows no decay after heating to 360 °C during 1 h. Dispersion of the refractive-index change suggests that the photosensitivity is associated with changes in the intrinsic glass absorption edge.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X.-C. Long and S. R. J. Brueck, Appl. Phys. Lett. 74, 2110 (1999).
    [CrossRef]
  2. A. Othonos, Rev. Sci. Instrum. 68, 4309 (1997).
    [CrossRef]
  3. A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, and J. W. Fleming, Appl. Phys. Lett. 64, 821 (1994).
    [CrossRef]
  4. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
    [CrossRef]
  5. A. Barbulescu and L. Sincan, Phys. Status Solidi A 85, K129 (1984).
    [CrossRef]
  6. N. Uchida, J. Opt. Soc. Am. 63, 280 (1973).
    [CrossRef]
  7. S. Mailis, A. A. Anderson, S. J. Barrington, W. S. Brocklesby, R. Greef, H. N. Rutt, R. W. Eason, N. A. Vainos, and C. Grivas, Opt. Lett. 23, 1751 (1998).
    [CrossRef]
  8. S. Radic, R. J. Essiambre, R. Boyd, P. A. Tick, and N. Borrelli, Opt. Lett. 23, 1730 (1998).
    [CrossRef]
  9. E. M. Vogel, M. J. Weber, and D. M. Krol, Phys. Chem. Glasses 32, 231 (1991).

1999 (1)

X.-C. Long and S. R. J. Brueck, Appl. Phys. Lett. 74, 2110 (1999).
[CrossRef]

1998 (2)

1997 (2)

A. Othonos, Rev. Sci. Instrum. 68, 4309 (1997).
[CrossRef]

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
[CrossRef]

1994 (1)

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, and J. W. Fleming, Appl. Phys. Lett. 64, 821 (1994).
[CrossRef]

1991 (1)

E. M. Vogel, M. J. Weber, and D. M. Krol, Phys. Chem. Glasses 32, 231 (1991).

1984 (1)

A. Barbulescu and L. Sincan, Phys. Status Solidi A 85, K129 (1984).
[CrossRef]

1973 (1)

Anderson, A. A.

Barbulescu, A.

A. Barbulescu and L. Sincan, Phys. Status Solidi A 85, K129 (1984).
[CrossRef]

Barrington, S. J.

Borrelli, N.

Boyd, R.

Brocklesby, W. S.

Brueck, S. R. J.

X.-C. Long and S. R. J. Brueck, Appl. Phys. Lett. 74, 2110 (1999).
[CrossRef]

Eason, R. W.

Eggleton, B. J.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
[CrossRef]

Erdogan, T.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, and J. W. Fleming, Appl. Phys. Lett. 64, 821 (1994).
[CrossRef]

Essiambre, R. J.

Fleming, J. W.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, and J. W. Fleming, Appl. Phys. Lett. 64, 821 (1994).
[CrossRef]

Glass, A. M.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, and J. W. Fleming, Appl. Phys. Lett. 64, 821 (1994).
[CrossRef]

Greef, R.

Grivas, C.

Krol, D. M.

E. M. Vogel, M. J. Weber, and D. M. Krol, Phys. Chem. Glasses 32, 231 (1991).

Lemaire, P. J.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, and J. W. Fleming, Appl. Phys. Lett. 64, 821 (1994).
[CrossRef]

Litchinitser, N. M.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
[CrossRef]

Long, X.-C.

X.-C. Long and S. R. J. Brueck, Appl. Phys. Lett. 74, 2110 (1999).
[CrossRef]

Mailis, S.

Mizrahi, V.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, and J. W. Fleming, Appl. Phys. Lett. 64, 821 (1994).
[CrossRef]

Othonos, A.

A. Othonos, Rev. Sci. Instrum. 68, 4309 (1997).
[CrossRef]

Partovi, A.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, and J. W. Fleming, Appl. Phys. Lett. 64, 821 (1994).
[CrossRef]

Patterson, D. B.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
[CrossRef]

Radic, S.

Rutt, H. N.

Sincan, L.

A. Barbulescu and L. Sincan, Phys. Status Solidi A 85, K129 (1984).
[CrossRef]

Tick, P. A.

Uchida, N.

Vainos, N. A.

Vogel, E. M.

E. M. Vogel, M. J. Weber, and D. M. Krol, Phys. Chem. Glasses 32, 231 (1991).

Weber, M. J.

E. M. Vogel, M. J. Weber, and D. M. Krol, Phys. Chem. Glasses 32, 231 (1991).

Appl. Phys. Lett. (2)

X.-C. Long and S. R. J. Brueck, Appl. Phys. Lett. 74, 2110 (1999).
[CrossRef]

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, and J. W. Fleming, Appl. Phys. Lett. 64, 821 (1994).
[CrossRef]

J. Lightwave Technol. (1)

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, J. Lightwave Technol. 15, 1303 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (2)

Phys. Chem. Glasses (1)

E. M. Vogel, M. J. Weber, and D. M. Krol, Phys. Chem. Glasses 32, 231 (1991).

Phys. Status Solidi A (1)

A. Barbulescu and L. Sincan, Phys. Status Solidi A 85, K129 (1984).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Othonos, Rev. Sci. Instrum. 68, 4309 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement for writing gratings in lead silicate glasses. The source is a 266-nm, fourth-harmonic Q-switched YAG laser. The silica phase mask with period of 738 nm is designed for 248 nm. The silica prism is used to completely reject the zero-order transmitted light as well as to separate the glass samples from the phase mask.

Fig. 2
Fig. 2

Depth profile of the diffraction efficiency for a UV-laser-induced grating on lead silicate glass SF59 (F2). The diffraction efficiency drops sharply as the surface-relief grating with 100nm 20nm depth is removed. The measured and modeled [by Eq. (1)] diffraction efficiencies, indicated by filled circles and solid curves, respectively, indicate peak refractive-index modulation of Δn=0.21±0.04 Δn=0.007±0.002 with an exponential decay length of 118 nm (303 nm) that results from the strong absorption at the 266-nm writing wavelength.

Fig. 3
Fig. 3

Photoinduced refractive-index changes versus heavy-metal lead cation in mole percent (filled circles) and exponential fit (solid lines). Open circle, from Ref. 7 for glass 55GeO220PbO10BaO10ZnO5K2O (mol. %); filled square, from Ref. 8 for glass 47SnF247PO2.54PbO2SnCl2 (mol. %).

Fig. 4
Fig. 4

Dispersion of Δn for the lead silicate glass SF59. The index change values were normalized to the value at 633 nm. Solid curve, a fit to a simple Sellmeier dependence with a characteristic wavelength of 353 nm.

Tables (2)

Tables Icon

Table 1 Composition of Lead Silicate Glasses in mol. % and (wt. %)

Tables Icon

Table 2 Fitting Parameters for the Photosensitive Index Grating Parameters Δn and αUV for Various Lead Silicate Glasses

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η=πΔnλαUV cos θ2exp-2αUVh,

Metrics