Abstract

We demonstrate a nonresonant cw Raman laser pumped by an optically locked diode laser at 790 nm that produces cw Stokes (1178-nm) and coherent anti-Stokes (595-nm) emission. Considering the modest pump powers, relative low cost, and predicted spectral purity, we expect that frequency downconversion of tunable diode lasers through stimulated Raman scattering will provide an attractive source for remote sensing, spectroscopic, and atomic physics applications. The Stokes laser threshold is 240±19 µW pump power, and emission is observed over a roughly 10-nm range by adjustment of the optical locking feedback phase. Photon-conversion efficiency rises throughout the pump-power region, with a peak value of 15±2%.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen, Am. J. Phys. 35, 989 (1967).
    [Crossref]
  2. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, Opt. Lett. 23, 367 (1998).
    [Crossref]
  3. K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, J. Opt. Soc. Am. B 15, 1667 (1998).
    [Crossref]
  4. R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
  5. M. Poelker and P. Kumar, Opt. Lett. 17, 399 (1992).
    [Crossref] [PubMed]
  6. S. N. Jabr, Opt. Lett. 12, 690 (1987).
    [Crossref] [PubMed]
  7. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
    [Crossref]
  8. B. Dahmani, L. Hollberg, and R. Drullinger, Opt. Lett. 12, 876 (1987).
    [Crossref] [PubMed]
  9. Ph. Laurent, A. Clairon, and Ch. Brant, IEEE J. Quantum Electron. 25, 1131 (1989).
    [Crossref]
  10. H. Li and N. B. Abraham, IEEE J. Quantum Electron. 25, 1782 (1989).
    [Crossref]
  11. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
    [Crossref]
  12. F. Favre and D. Le Guen, IEEE J. Quantum Electron. QE-21, 1937 (1985).
    [Crossref]
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [Crossref]
  14. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, J. Opt. Soc. Am. B 16, 1305 (1999).
    [Crossref]
  15. K. S. Kepasky, L. Meng, J. K. Brasseur, J. L. Carlsten, and R. C. Swanson, J. Opt. Soc. Am. B 16, 717 (1999).
    [Crossref]

1999 (2)

1998 (2)

1992 (1)

1989 (2)

Ph. Laurent, A. Clairon, and Ch. Brant, IEEE J. Quantum Electron. 25, 1131 (1989).
[Crossref]

H. Li and N. B. Abraham, IEEE J. Quantum Electron. 25, 1782 (1989).
[Crossref]

1987 (2)

1986 (1)

1985 (1)

F. Favre and D. Le Guen, IEEE J. Quantum Electron. QE-21, 1937 (1985).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

1981 (1)

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

1980 (1)

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[Crossref]

1967 (1)

N. Bloembergen, Am. J. Phys. 35, 989 (1967).
[Crossref]

Abdul-Halim, I.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Abraham, N. B.

H. Li and N. B. Abraham, IEEE J. Quantum Electron. 25, 1782 (1989).
[Crossref]

Bischel, W. K.

Bloembergen, N.

N. Bloembergen, Am. J. Phys. 35, 989 (1967).
[Crossref]

Brant, Ch.

Ph. Laurent, A. Clairon, and Ch. Brant, IEEE J. Quantum Electron. 25, 1131 (1989).
[Crossref]

Brasseur, J. K.

Carlsten, J. L.

Clairon, A.

Ph. Laurent, A. Clairon, and Ch. Brant, IEEE J. Quantum Electron. 25, 1131 (1989).
[Crossref]

Dahmani, B.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Drullinger, R.

Dyer, M. J.

Favre, F.

F. Favre and D. Le Guen, IEEE J. Quantum Electron. QE-21, 1937 (1985).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Heppner, J.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Hollberg, L.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Huber, U.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Jabr, S. N.

Kepasky, K. S.

Kobayashi, K.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Kumar, P.

Lang, R.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[Crossref]

Laurent, Ph.

Ph. Laurent, A. Clairon, and Ch. Brant, IEEE J. Quantum Electron. 25, 1131 (1989).
[Crossref]

Le Guen, D.

F. Favre and D. Le Guen, IEEE J. Quantum Electron. QE-21, 1937 (1985).
[Crossref]

Li, H.

H. Li and N. B. Abraham, IEEE J. Quantum Electron. 25, 1782 (1989).
[Crossref]

Max, R.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Meng, L.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Ni, Y.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Poelker, M.

Repasky, K. S.

Roos, P. A.

Swanson, R. C.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Weiss, C. O.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Willenberg, G.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Am. J. Phys. (1)

N. Bloembergen, Am. J. Phys. 35, 989 (1967).
[Crossref]

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

IEEE J. Quantum Electron. (5)

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Ph. Laurent, A. Clairon, and Ch. Brant, IEEE J. Quantum Electron. 25, 1131 (1989).
[Crossref]

H. Li and N. B. Abraham, IEEE J. Quantum Electron. 25, 1782 (1989).
[Crossref]

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[Crossref]

F. Favre and D. Le Guen, IEEE J. Quantum Electron. QE-21, 1937 (1985).
[Crossref]

J. Opt. Soc. Am. B (4)

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conceptual diagram of resonant optical feedback, showing a ring geometry. Lo, photon travel distance outside the HFC; LHFC, HFC mirror separation. The diode laser operating frequency is sensitive to both of these parameters. Note that energy circulates only in the clockwise direction, as indicated by the arrows.

Fig. 2
Fig. 2

Diode-pumped cw Raman laser setup, showing ring-configuration optical locking: LD, laser diode; APP, anamorphic prism pair; GP, Glan polarizer; FR, Faraday rotator; λ/2’s, half-wave plates; PBS, polarizing beam splitter; EOM electro-optic modulator; BS1–BS3, beam splitters; MML’s, mode-matching lenses; M1–M4, mirrors; PBP, Pellin–Broca prism.

Fig. 3
Fig. 3

HFC output powers for the transmitted pump beam at 790 nm (squares) and the Stokes beam at 1178 nm (circles) as functions of input optical power. The solid lines represent theoretical models that were developed in Refs. 3 and 14. The top axis gives the incident pump power, and the bottom axis accounts for various coupling losses into the HFC. The Stokes laser threshold is observed at 240±19 µW.

Fig. 4
Fig. 4

Photon-conversion efficiency from the pump to the Stokes beams as a function of input optical power. The solid curve represents theoretical predictions based on Refs. 3 and 14. The top axis gives the incident pump power, and the bottom axis accounts for various coupling losses into the HFC. The efficiency rises throughout the pump-power region, with a peak value of 15±2%. The efficiency is predicted ultimately to peak at 17.5% for a pump power of four times threshold.

Metrics