Abstract

We describe a polarization Sagnac interferometer with an in-loop half-wave plate that allows signal detection at the reciprocal port of the beam splitter while maintaining the ability to detect the signal at a dark fringe. Postmodulation and balanced heterodyne detection are used to recover the signal. This topology is simple to control because of its common-path characteristics and its collinear signal and local oscillator. The robustness of this scheme to amplitude and frequency fluctuations of the laser is demonstrated. Intraloop birefringence in this interferometer acts as a loss, reducing the power on the detector. The magnitude of this loss is discussed and experimentally verified.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Sagnac, C. R. Acad. Sci. 95, 1410 (1913).
  2. E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
    [CrossRef]
  3. R. Weiss, “Caltech/MIT project for a laser interferometer gravitational wave observatory,” proposal to the National Science Foundation (1987).
  4. K. X. Sun, M. M. Fejer, E. K. Gustafson, and R. L. Byer, Phys. Rev. Lett. 76, 3053 (1996).
    [CrossRef] [PubMed]
  5. D. A. Shaddock, M. B. Gray, and D. E. McClelland, Appl. Opt. 37, 7995 (1998).
    [CrossRef]
  6. P. T. Beyersdorf, M. M. Fejer, and R. L. Byer, “Polarization Sagnac interferometer with common-path local oscillator for heterodyne detection,” J. Opt. Soc. Am. B (to be published).
  7. M. A. Novikov, Opt. Spektrosk. 61, 424 (1986).
  8. D. Jackson, Electron. Lett. 20, 10 (1984).
    [CrossRef]
  9. K. X. Sun, M. M. Fejer, E. K. Gustafson, and R. L. Beyer, Opt. Lett. 22, 1485 (1997).
    [CrossRef]
  10. K. X. Sun, E. K. Gustafson, M. M. Fejer, and R. L. Byer, Opt. Lett. 22, 1359 (1997).
    [CrossRef]
  11. B. Willke, N. Uehara, E. K. Gustafson, and R. L. Byer, Opt. Lett. 23, 1704 (1998).
    [CrossRef]

1998 (2)

1997 (2)

1996 (1)

K. X. Sun, M. M. Fejer, E. K. Gustafson, and R. L. Byer, Phys. Rev. Lett. 76, 3053 (1996).
[CrossRef] [PubMed]

1986 (1)

M. A. Novikov, Opt. Spektrosk. 61, 424 (1986).

1984 (1)

D. Jackson, Electron. Lett. 20, 10 (1984).
[CrossRef]

1967 (1)

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

1913 (1)

G. Sagnac, C. R. Acad. Sci. 95, 1410 (1913).

Beyer, R. L.

Beyersdorf, P. T.

P. T. Beyersdorf, M. M. Fejer, and R. L. Byer, “Polarization Sagnac interferometer with common-path local oscillator for heterodyne detection,” J. Opt. Soc. Am. B (to be published).

Byer, R. L.

B. Willke, N. Uehara, E. K. Gustafson, and R. L. Byer, Opt. Lett. 23, 1704 (1998).
[CrossRef]

K. X. Sun, E. K. Gustafson, M. M. Fejer, and R. L. Byer, Opt. Lett. 22, 1359 (1997).
[CrossRef]

K. X. Sun, M. M. Fejer, E. K. Gustafson, and R. L. Byer, Phys. Rev. Lett. 76, 3053 (1996).
[CrossRef] [PubMed]

P. T. Beyersdorf, M. M. Fejer, and R. L. Byer, “Polarization Sagnac interferometer with common-path local oscillator for heterodyne detection,” J. Opt. Soc. Am. B (to be published).

Fejer, M. M.

K. X. Sun, E. K. Gustafson, M. M. Fejer, and R. L. Byer, Opt. Lett. 22, 1359 (1997).
[CrossRef]

K. X. Sun, M. M. Fejer, E. K. Gustafson, and R. L. Beyer, Opt. Lett. 22, 1485 (1997).
[CrossRef]

K. X. Sun, M. M. Fejer, E. K. Gustafson, and R. L. Byer, Phys. Rev. Lett. 76, 3053 (1996).
[CrossRef] [PubMed]

P. T. Beyersdorf, M. M. Fejer, and R. L. Byer, “Polarization Sagnac interferometer with common-path local oscillator for heterodyne detection,” J. Opt. Soc. Am. B (to be published).

Gray, M. B.

Gustafson, E. K.

Jackson, D.

D. Jackson, Electron. Lett. 20, 10 (1984).
[CrossRef]

McClelland, D. E.

Novikov, M. A.

M. A. Novikov, Opt. Spektrosk. 61, 424 (1986).

Post, E. J.

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Sagnac, G.

G. Sagnac, C. R. Acad. Sci. 95, 1410 (1913).

Shaddock, D. A.

Sun, K. X.

Uehara, N.

Weiss, R.

R. Weiss, “Caltech/MIT project for a laser interferometer gravitational wave observatory,” proposal to the National Science Foundation (1987).

Willke, B.

Appl. Opt. (1)

C. R. Acad. Sci. (1)

G. Sagnac, C. R. Acad. Sci. 95, 1410 (1913).

Electron. Lett. (1)

D. Jackson, Electron. Lett. 20, 10 (1984).
[CrossRef]

Opt. Lett. (3)

Opt. Spektrosk. (1)

M. A. Novikov, Opt. Spektrosk. 61, 424 (1986).

Phys. Rev. Lett. (1)

K. X. Sun, M. M. Fejer, E. K. Gustafson, and R. L. Byer, Phys. Rev. Lett. 76, 3053 (1996).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Other (2)

R. Weiss, “Caltech/MIT project for a laser interferometer gravitational wave observatory,” proposal to the National Science Foundation (1987).

P. T. Beyersdorf, M. M. Fejer, and R. L. Byer, “Polarization Sagnac interferometer with common-path local oscillator for heterodyne detection,” J. Opt. Soc. Am. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical layout of the polarization Sagnac interferometer: LP, linear polarizer; AOM, acousto-optic modulator; PBS1PBS3, polarizing beam splitters; HWP1HWP3, half-wave plates; QWP, quarter-wave plate; SF, spatial filter; EOM1EOM3, electro-optic modulators; DET’s, photodetectors. Each arm contains a 75-bounce 2-m-long delay line. PBS1 is slightly tilted to leak 0.3% of the cross polarization. Not shown is the resonant ring cavity11 immediately after the laser, which is used as a spatial and temporal mode cleaner. EOM2 is used to introduce modulation that simulates a gravitational-wave signal and would not be present in a gravitational-wave detector.

Fig. 2
Fig. 2

Measurement of the frequency noise suppression of the polarization Sagnac interferometer. Output power levels are normalized to a 32-mrad amplitude-modulated calibration signal at 300 kHz. The difference between the two traces represents the conversion of the 2.5 rad of input frequency noise to amplitude noise on the detector.

Fig. 3
Fig. 3

Demonstration of the amplitude noise suppression owing to balanced detection. Both a differential swept-frequency signal, which traces out two peaks of the Sagnac interferometer response, and an amplitude modulation placed on the input field, which produces a spike at 1.125 MHz, are detected by a single detector (solid curve). By use of two balanced detectors (dotted curve) sensitivity to the amplitude modulation is eliminated.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Eout=P2tWθP2r exp+iΔϕ2+P2rW-θP2t exp-iΔϕ2Ein,
Eout=12exp+iΔϕ2exp-iΔϕ2,
FC=10 logPdp/Pbp,

Metrics