Abstract

Four-wave mixing in dense periodic fiber is much less than in conventional dispersion management and constant-dispersion systems over a wide wavelength range, including the resonant wavelength.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Liang, Appl. Opt. 36, 3793 (1997).
    [CrossRef] [PubMed]
  2. A. H. Liang and A. Hasegawa, presented a proposal entitled “Soliton propagation in dense periodical fibers” to the Japan Society for the Promotion of Science on April 1, 1996.
  3. A. H. Liang, H. Toda, and A. Hasegawa, Opt. Lett. 24, 799 (1999).
    [CrossRef]
  4. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
    [CrossRef]
  5. R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
    [CrossRef]
  6. N. Shibata, R. P. Braun, and R. G. Warrts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
    [CrossRef]
  7. D. G. Schadt, Electron. Lett. 27, 1805 (1991).
    [CrossRef]
  8. P. V. Mamyshev and L. F. Mollenauer, Opt. Lett. 21, 396 (1996).
    [CrossRef] [PubMed]
  9. M. Onishi, C. Fukuda, H. Kanamori, and M. Nishimura, in 20th European Conference on Optical Communication (ECOC ’94) (Interuniversity Microelectronics Center, Firenze, Italy, 1994), p. 681.

1999 (1)

1997 (1)

1996 (1)

1991 (1)

D. G. Schadt, Electron. Lett. 27, 1805 (1991).
[CrossRef]

1987 (1)

N. Shibata, R. P. Braun, and R. G. Warrts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
[CrossRef]

1978 (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

1973 (1)

R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

Braun, R. P.

N. Shibata, R. P. Braun, and R. G. Warrts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
[CrossRef]

Fukuda, C.

M. Onishi, C. Fukuda, H. Kanamori, and M. Nishimura, in 20th European Conference on Optical Communication (ECOC ’94) (Interuniversity Microelectronics Center, Firenze, Italy, 1994), p. 681.

Hasegawa, A.

A. H. Liang, H. Toda, and A. Hasegawa, Opt. Lett. 24, 799 (1999).
[CrossRef]

A. H. Liang and A. Hasegawa, presented a proposal entitled “Soliton propagation in dense periodical fibers” to the Japan Society for the Promotion of Science on April 1, 1996.

Hill, K. O.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Ippen, E. P.

R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

Johnson, D. C.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Kanamori, H.

M. Onishi, C. Fukuda, H. Kanamori, and M. Nishimura, in 20th European Conference on Optical Communication (ECOC ’94) (Interuniversity Microelectronics Center, Firenze, Italy, 1994), p. 681.

Kawasaki, B. S.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Liang, A. H.

A. H. Liang, H. Toda, and A. Hasegawa, Opt. Lett. 24, 799 (1999).
[CrossRef]

A. H. Liang, Appl. Opt. 36, 3793 (1997).
[CrossRef] [PubMed]

A. H. Liang and A. Hasegawa, presented a proposal entitled “Soliton propagation in dense periodical fibers” to the Japan Society for the Promotion of Science on April 1, 1996.

MacDonald, R. I.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Mamyshev, P. V.

Mollenauer, L. F.

Nishimura, M.

M. Onishi, C. Fukuda, H. Kanamori, and M. Nishimura, in 20th European Conference on Optical Communication (ECOC ’94) (Interuniversity Microelectronics Center, Firenze, Italy, 1994), p. 681.

Onishi, M.

M. Onishi, C. Fukuda, H. Kanamori, and M. Nishimura, in 20th European Conference on Optical Communication (ECOC ’94) (Interuniversity Microelectronics Center, Firenze, Italy, 1994), p. 681.

Schadt, D. G.

D. G. Schadt, Electron. Lett. 27, 1805 (1991).
[CrossRef]

Shibata, N.

N. Shibata, R. P. Braun, and R. G. Warrts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
[CrossRef]

Stolen, R. H.

R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

Toda, H.

Warrts, R. G.

N. Shibata, R. P. Braun, and R. G. Warrts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

Electron. Lett. (1)

D. G. Schadt, Electron. Lett. 27, 1805 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Shibata, R. P. Braun, and R. G. Warrts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
[CrossRef]

J. Appl. Phys. (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Opt. Lett. (2)

Other (2)

A. H. Liang and A. Hasegawa, presented a proposal entitled “Soliton propagation in dense periodical fibers” to the Japan Society for the Promotion of Science on April 1, 1996.

M. Onishi, C. Fukuda, H. Kanamori, and M. Nishimura, in 20th European Conference on Optical Communication (ECOC ’94) (Interuniversity Microelectronics Center, Firenze, Italy, 1994), p. 681.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dispersion map of the DPF’s where zA and zp are the amplifier spacing and the dispersion period, respectively, and D1 and z1 (D2 and z2) are the dispersion and the length of the abnormal (normal) dispersion section, respectively.

Fig. 2
Fig. 2

Relative mixing efficiency (a) ηzA for a single span and (b) ηMzA for multiple EDFA spans M=20. All parameters expect M are the same in (a) and (b). D1=-D2=17 ps/km/nm and Dave=0 (for n=1 and n=5) at 1.55 µm, D1=D2=17 ps/km/nm (for the constant system) at 1.55 µm, and α1=α2=0.21 dB/km. Slope 1 and Slope 2 refer to the dispersion slopes of sections z1 and z2, respectively.9

Fig. 3
Fig. 3

Relative mixing efficiency (a) ηzA for a single span and (b), (c) ηMzA for multiple EDFA spans M=20. All parameters (b) except M are the same as in (a), and all parameters in (c) are the same as in (b), except that the dispersion slope is 0. D1=-D2=5 ps/km/nm and Dave=0.125 ps/km/nm (for n=1 and n=5) at 1.55 µm, D1=D2=5 ps/km/nm (for the constant system) at 1.55 µm, and α1=α2=0.21 dB/km.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

dE1zdz=-0.5αzE1z+in2zω16cQE2*Z×E3zE4zexpi 0zk1zdz,
Ejz=Aeff0AeffzEj0×exp-0z0.5αz+ikjzdz-0.5αcz,
N0z=n2zω16cQAeff0Aeffz1.5E2*0E30E40.
dfzdz=iN0z×exp0ziΔkz-αzdz-αcz,
ηMzA=E1MzA,ΔkE1zA,Δk=02,
ηMzA=α2 exp-0.5α1-α2nz1-nαco1-exp-α2zA×N01N02B1H1+B2H22CnJM,
H1=expiΔk1-α1z1-1iΔk1-α1, H2=exp0.5iΔk2-α2z2-1iΔk2-α2,
N01N02=n21n22Aeff2Aeff11.5, B1=exp0.5iΔk2-α2z2-αco,
B2=1+expiΔk1z1+0.5Δk2z2-α1z1+0.5α2z2-2αco,
Cn=1-expniΔk1z1+Δk2z2-α1z1+α2z2-2αco1-expiΔk1z1+Δk2z2-α1z1+α2z2-2αco}2,
JM=sin20.5MnΔk1z1+Δk2z2sin20.5nΔk1z1+Δk2z2,
nΔk1z1+Δk2z2=2πcλ2DavezAΔλ2=2Rπ, R=0,±1,±2.
Δk1z1=-Δk2z2=4rπ, r=1,2,3,
Δk1z1=-Δk2z2=4r+2π, r=0,1,2
nΔk1z1+Δk2z2=2πcλ2DavezAΔλ2=2R+1π, R=0,±1,±2.

Metrics