Abstract

A unified exposition of the concepts of wave propagation through an intermittent atmosphere is set forth. By use of the simple example of the mutual coherence function, consistent definitions with experimental ramifications are introduced. I show that (a) the long-range limit of propagation through intermittency involves an effective medium that is distinct from the nonintermittent propagation case, (b) there is no evidence that coherence always improves in the presence of intermittency, and (c) the estimation procedures of the parameters of turbulence by the current algorithms should be changed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Gozani, Opt. Lett. 17, 559 (1992).
    [CrossRef] [PubMed]
  2. J. Gozani, Phys. Rev. E 53, 6486 (1996).
    [CrossRef]
  3. V. I. Tatarskii, The Effect of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Va., 1971).
  4. V. I. Tatarskii and V. U. Zavorotnyi, J. Opt. Soc. Am. A 12, 2069 (1985).
    [CrossRef]
  5. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, San Diego, Calif., 1978), Vol. 2.
  6. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991).

1996 (1)

J. Gozani, Phys. Rev. E 53, 6486 (1996).
[CrossRef]

1992 (1)

1985 (1)

V. I. Tatarskii and V. U. Zavorotnyi, J. Opt. Soc. Am. A 12, 2069 (1985).
[CrossRef]

Gozani, J.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, San Diego, Calif., 1978), Vol. 2.

Papoulis, A.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991).

Tatarskii, V. I.

V. I. Tatarskii and V. U. Zavorotnyi, J. Opt. Soc. Am. A 12, 2069 (1985).
[CrossRef]

V. I. Tatarskii, The Effect of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Va., 1971).

Zavorotnyi, V. U.

V. I. Tatarskii and V. U. Zavorotnyi, J. Opt. Soc. Am. A 12, 2069 (1985).
[CrossRef]

J. Opt. Soc. Am. A (1)

V. I. Tatarskii and V. U. Zavorotnyi, J. Opt. Soc. Am. A 12, 2069 (1985).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

J. Gozani, Phys. Rev. E 53, 6486 (1996).
[CrossRef]

Other (3)

V. I. Tatarskii, The Effect of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Va., 1971).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, San Diego, Calif., 1978), Vol. 2.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Γ11Z,ruZ,0u*Z,rSS,
Γ11DθZ,rexp-k240zdz Dθz,r,
Γ11DZ,rLS=uZ,0u*Z,rSSLS.
Γ11DZ,rLS=expΘDZ,r,
ΘDZ,rn=1-k24n0Zdz1 0Zn-1dznKDnz1,,zn;r.
KDnz1,,zn;rDz1,rDzn,rc
KDn(z1,,znn;r)=K~Dn(z1-zn,,zn-1-znn-1;r).
Θ~DZ,rn=1-k24n0Zdz10nz-2dzn-1×K~Dnz1,,zn-1;rZ-z1,
Γ11DΓ11D.
limZΓ11DZ,rΓ11DZLc,r1
β=Kβ1r=0,   β2Kβ2z=0;r=σD2,β3Kβ3z1=z2=0;r=σD3γ1,
Γ11D=Γ11DexpΘ~βZ,
Lc0dzψz;r,   ψz;rKβ2z;rσD2.
Θ~βZ,rΘeZ,r-ΘoZ,r.
Zk2σD/4-1Lc,
Θ~βZ,r=n=2-1nn!Ok2σDZ/4n, ΘeZ,r12!k2σDZ/42, ΘoZ,r=γ13!Ok2σDZ/43.
Zk2σD/4-1Lc,
Θ~βZ,r=-k24σDZn=2-1nOk2σDLc/4n, ΘeZ,rk2σDLc/42Z/Lc, ΘoZ,rγ1ΘeZ,rOk2σDLc/4.
Γ11DZLc,rΓ11[{KDn(·)|nN}],
KDnz;r=Kstonl=znδzl-zl-1,
ΘDstoZ,r=-k240ZdzΘ·Dstoz,r,
Θ·Dstoz,rn=1-k24n-1Kstonz,rn-1!.
KDnz;rKDn0+,rδz-0+Z,
Θ·DcohZ,rn=1-k2Z4n-1κDnrn-1!.
Γ11LSstocoh=exp-k240ZdzΘ·Dstocohz,r.

Metrics