Abstract

We describe an erbium fiber laser that is passively mode locked by a novel, precision antireflection-coated semiconductor saturable-absorber mirror that incorporates an additional two-photon absorber. It is shown that passive mode locking evolves from a Qswitching instability. The results are achieved by use of saturable absorbers that provide a large (15%) nonlinear (saturable) loss. Exploiting two-photon absorption can substantially reduce the peak power of the Qswitched pulses, which results in improved reliability of the laser. Moreover, two-photon absorption can be used to produce an optimal stability range for saturable-absorber mode locking.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. N. Duling, Compact Sources of Ultrashort Pulses (Cambridge U. Press, Cambridge, 1995).
    [CrossRef]
  2. M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997), and references therein.
    [CrossRef]
  3. M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, Opt. Lett. 19, 43 (1994).
    [CrossRef] [PubMed]
  4. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, Opt. Lett. 17, 505 (1992).
    [CrossRef] [PubMed]
  5. M. Dennis and I. N. Duling, Appl. Phys. Lett. 62, 2911 (1993).
    [CrossRef]
  6. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).
    [CrossRef]
  7. F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
    [CrossRef]
  8. F. Krausz, T. Brabec, and C. Spielmann, Opt. Lett. 4, 235 (1991).
    [CrossRef]
  9. E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, J. Opt. Soc. Am. B 5, 1980 (1988).
    [CrossRef]

1999 (1)

1997 (1)

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997), and references therein.
[CrossRef]

1995 (1)

F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

1994 (1)

1993 (1)

M. Dennis and I. N. Duling, Appl. Phys. Lett. 62, 2911 (1993).
[CrossRef]

1992 (1)

1991 (1)

F. Krausz, T. Brabec, and C. Spielmann, Opt. Lett. 4, 235 (1991).
[CrossRef]

1988 (1)

Andrejco, M. J.

Asom, M. T.

Boyd, G. D.

Brabec, T.

F. Krausz, T. Brabec, and C. Spielmann, Opt. Lett. 4, 235 (1991).
[CrossRef]

Brovelli, L. R.

F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Calasso, I.

F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Chiu, T. H.

Dennis, M.

M. Dennis and I. N. Duling, Appl. Phys. Lett. 62, 2911 (1993).
[CrossRef]

Duling, I. N.

M. Dennis and I. N. Duling, Appl. Phys. Lett. 62, 2911 (1993).
[CrossRef]

I. N. Duling, Compact Sources of Ultrashort Pulses (Cambridge U. Press, Cambridge, 1995).
[CrossRef]

Ferguson, J. F.

Fermann, M. E.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997), and references therein.
[CrossRef]

M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, Opt. Lett. 19, 43 (1994).
[CrossRef] [PubMed]

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997), and references therein.
[CrossRef]

Hagan, D. J.

Harter, D.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997), and references therein.
[CrossRef]

Hönninger, C.

Kamp, M.

F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Kartner, F. X.

F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Keller, U.

Kopf, D.

F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Krausz, F.

F. Krausz, T. Brabec, and C. Spielmann, Opt. Lett. 4, 235 (1991).
[CrossRef]

Mansour, K.

Miller, D. A. B.

Morier-Genoud, F.

Moser, M.

Paschotta, R.

Soileau, M. J.

Spielmann, C.

F. Krausz, T. Brabec, and C. Spielmann, Opt. Lett. 4, 235 (1991).
[CrossRef]

Stock, M. L.

Sucha, G.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997), and references therein.
[CrossRef]

Van Stryland, E. W.

Wu, Y. Y.

Yang, L.-M.

Appl. Phys. B (1)

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, Appl. Phys. B 65, 259 (1997), and references therein.
[CrossRef]

Appl. Phys. Lett. (1)

M. Dennis and I. N. Duling, Appl. Phys. Lett. 62, 2911 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Eng. (1)

F. X. Kartner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Opt. Eng. 34, 2024 (1995).
[CrossRef]

Opt. Lett. (3)

Other (1)

I. N. Duling, Compact Sources of Ultrashort Pulses (Cambridge U. Press, Cambridge, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the erbium-doped fiber laser: HR’s, high reflectors; TPA, TPA material; EDF, erbium doped fiber; WDM, wavelength-division multiplexer; FR’s, Faraday rotators; WP, wave plate.

Fig. 2
Fig. 2

Autocorrelation and spectrum of a typical soliton pulse generated with a near-resonant SA.

Fig. 3
Fig. 3

(a) Time record of laser intensity during the start-up process of the erbium-doped fiber. The signal strength is normalized to that of a cw mode-locked (cwML) signal. ML, mode locked; QSML, Qswitched mode locked. Inset, illustrative trace of a typical Qswitched envelope with mode-locked pulses.

Fig. 4
Fig. 4

Intensity dependence of the nonlinear losses that are due to the SA, to TPA, and to the sum of the two components. The data points are measured with an antireflection-coated InP wafer (open circles) for the TPA effects and with 0.75µm InGaAsP for one-photon saturable absorption.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

AFP=1-R1-T1-2RT+RT cos δ,
ELgK2EP3+EP2>ELEAΔR,
K=4πn2LKD2Aeffλ0Δvg0.3151.76.
α2=β2Id2/1+β2Id2;

Metrics