Abstract

In vacuo laser cooling of a solid from 301 to 236 K has been demonstrated. The sample consists of a cladded, multimode optical fiber fabricated from the fluorozirconate glass ZBLANP; the fiber’s waveguiding core is doped with 1 wt. % Yb3+ ions. Cooling of the host glass results from anti-Stokes fluorescence of Yb3+ following optical pumping in the long-wavelength tail of the ion’s absorption spectrum λ=1015 nm. Measurement of the time constant for equilibration of the sample temperature is in excellent agreement with an analytic calculation of this quantity.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
    [CrossRef]
  2. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
    [CrossRef]
  3. X. Luo, M. D. Eisaman, and T. R. Gosnell, Opt. Lett. 23, 639 (1998).
    [CrossRef]
  4. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
    [CrossRef]
  5. C. E. Mungan and T. R. Gosnell, in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic, San Diego, Calif., 1999), Vol. 40, pp. 161–228.
    [CrossRef]
  6. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).
  7. D. E. McCumber, Phys. Rev. 136, A954 (1964).
    [CrossRef]
  8. The larger value of aeff reported in Ref. 3 was derived from the assumption of no temperature dependence for the absorption and stimulated-emission cross sections.?The more accurate expression Eq. (3) yields the value quoted here.
  9. J. M. Jewell and I. D. Aggarwal, J. Non-Cryst. Solids 142, 260 (1992).
    [CrossRef]
  10. W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
    [CrossRef]
  11. D. L. Gavin, K.-H. Chung, A. J. Bruce, C. T. Moynihan, M. G. Drexhage, and O. H. El Bayoumi, J. Am. Ceram. Soc. 65, C-182 (1983).

1998

1997

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

1995

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

1993

W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
[CrossRef]

1992

J. M. Jewell and I. D. Aggarwal, J. Non-Cryst. Solids 142, 260 (1992).
[CrossRef]

1983

D. L. Gavin, K.-H. Chung, A. J. Bruce, C. T. Moynihan, M. G. Drexhage, and O. H. El Bayoumi, J. Am. Ceram. Soc. 65, C-182 (1983).

1964

D. E. McCumber, Phys. Rev. 136, A954 (1964).
[CrossRef]

Aggarwal, I. D.

J. M. Jewell and I. D. Aggarwal, J. Non-Cryst. Solids 142, 260 (1992).
[CrossRef]

Bruce, A. J.

D. L. Gavin, K.-H. Chung, A. J. Bruce, C. T. Moynihan, M. G. Drexhage, and O. H. El Bayoumi, J. Am. Ceram. Soc. 65, C-182 (1983).

Buchwald, M. I.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

Chung, K.-H.

D. L. Gavin, K.-H. Chung, A. J. Bruce, C. T. Moynihan, M. G. Drexhage, and O. H. El Bayoumi, J. Am. Ceram. Soc. 65, C-182 (1983).

Drexhage, M. G.

D. L. Gavin, K.-H. Chung, A. J. Bruce, C. T. Moynihan, M. G. Drexhage, and O. H. El Bayoumi, J. Am. Ceram. Soc. 65, C-182 (1983).

Edwards, B. C.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

Eisaman, M. D.

El Bayoumi, O. H.

D. L. Gavin, K.-H. Chung, A. J. Bruce, C. T. Moynihan, M. G. Drexhage, and O. H. El Bayoumi, J. Am. Ceram. Soc. 65, C-182 (1983).

Epstein, R. I.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

Gavin, D. L.

D. L. Gavin, K.-H. Chung, A. J. Bruce, C. T. Moynihan, M. G. Drexhage, and O. H. El Bayoumi, J. Am. Ceram. Soc. 65, C-182 (1983).

Gosnell, T. R.

X. Luo, M. D. Eisaman, and T. R. Gosnell, Opt. Lett. 23, 639 (1998).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

C. E. Mungan and T. R. Gosnell, in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic, San Diego, Calif., 1999), Vol. 40, pp. 161–228.
[CrossRef]

Hasz, W. C.

W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
[CrossRef]

Jewell, J. M.

J. M. Jewell and I. D. Aggarwal, J. Non-Cryst. Solids 142, 260 (1992).
[CrossRef]

Luo, X.

McCumber, D. E.

D. E. McCumber, Phys. Rev. 136, A954 (1964).
[CrossRef]

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).

Moynihan, C. T.

W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
[CrossRef]

D. L. Gavin, K.-H. Chung, A. J. Bruce, C. T. Moynihan, M. G. Drexhage, and O. H. El Bayoumi, J. Am. Ceram. Soc. 65, C-182 (1983).

Mungan, C. E.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

C. E. Mungan and T. R. Gosnell, in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic, San Diego, Calif., 1999), Vol. 40, pp. 161–228.
[CrossRef]

Whang, J. H.

W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
[CrossRef]

Appl. Phys. Lett.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

J. Am. Ceram. Soc.

D. L. Gavin, K.-H. Chung, A. J. Bruce, C. T. Moynihan, M. G. Drexhage, and O. H. El Bayoumi, J. Am. Ceram. Soc. 65, C-182 (1983).

J. Non-Cryst. Solids

J. M. Jewell and I. D. Aggarwal, J. Non-Cryst. Solids 142, 260 (1992).
[CrossRef]

W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
[CrossRef]

Nature

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev.

D. E. McCumber, Phys. Rev. 136, A954 (1964).
[CrossRef]

Phys. Rev. Lett.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

Other

The larger value of aeff reported in Ref. 3 was derived from the assumption of no temperature dependence for the absorption and stimulated-emission cross sections.?The more accurate expression Eq. (3) yields the value quoted here.

C. E. Mungan and T. R. Gosnell, in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H. Walther, eds. (Academic, San Diego, Calif., 1999), Vol. 40, pp. 161–228.
[CrossRef]

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental apparatus used for observing laser cooling of Yb:ZBLANP. Pump radiation from a cw Ti:sapphire laser undergoes mode scrambling within an external multimode silica fiber before injection into the sample fiber, which is positioned upon a sample mount (inset), imposing an extremely low conductive thermal load. Unabsorbed pump radiation is collected from the output end of the sample fiber and reinjected into the sample with the help of an external high reflector. Finally, emitted fluorescence is collected with a third internal optic and is spectrally resolved so the sample temperature can be determined as described in the text.

Fig. 2
Fig. 2

Emission spectra of Yb:ZBLANP, illustrating laser cooling by 65 K. Solid curves, reference spectra captured with a closed-cycle cryostat fitted with a calibrated silicon-diode temperature sensor; dotted curve, emission spectrum obtained from the sample fiber after an 5min exposure to 2.2 W of input pump radiation at 1015 nm. The spectra have been normalized to unit amplitude at the spectral peak. Comparison of the sample spectrum with a reference spectrum captured at 236 K yields a minimum least-squares difference compared with reference spectra captured at immediately adjacent temperatures.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Pcool=aeffIsTsNσabsTsλ/λF*-11+σseTsσabsTs+aeffIsTsP,
Pload=πDσBTr4-Ts4=Pcool,
Tr4-Ts4=aeffIsTsNσabsTsλ/λF*-1πDσB1+σseTsσabsTs+aeffIsTsP.
σabsTs=σabsTr+σabsTTr Ts-Tr,
σseTσabsT=Z7/2TZ5/2TexphckT1λ00-1λ,
cmρmπD24dTs-Trdt=PloadTs-PcoolTs,
τc-1=1cmρmD16σBTr3+4PsNλ/λF*-1PsPσabsT-σabsσse/σabsTπD1+σse/σabs+Ps/P2,

Metrics